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Abstract
Cirolana troglexuma Botosaneanu & Iliffe, 1997 is redescribed and a Lucayalana Bruce & Brix, gen. n. 
established for the species. In total 38 specimens were collected from Hatchet Bay Cave, Eleuthera. Speci-
mens on which previous records of L. troglexuma (from Exuma Cays, Cat Island, and Eleuthera) were 
based have been re-examined when possible. The diagnostic identifying characters and purported apo-
morphies for Lucayalana gen. n. are: frontal lamina short, narrow, less than 7% width of labrum, not 
extending to anterior margin of head; pleonite 3 extending posteriorly to posterior of pleonite 5, laterally 
overlapping pleonites 4 and 5; ventrally broad, forming a strong ventrally directed blade; pereopods 1–3 
merus inferior margin RS not molariform. Mitochondrial COI and 16S loci and the nuclear 18S locus 
data show that all specimens are the one species. Comparison to additional cirolanid COI sequence data 
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(BOLD, GenBank) show that Lucayalana troglexuma is genetically distinct to all other cirolanid genera 
with available COI sequences. The single male and females have shared COI (with three females), 16S 
(eight females) and 18S sequences (two females).
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Introduction

During the last decades, it has become increasingly obvious that species diversity 
in caves has only been marginally captured and that many aquatic cave species still 
remain to be discovered and described (Juan et al. 2010). A large number of new 
species has been revealed for cave crustaceans, e.g. amphipods (Trontelj et al. 2007, 
Esmaeili-Rineh et al. 2015), decapods (Trontelj et al. 2007), bathynellaceans (Guzik 
et al. 2008) and isopods (Finston et al. 2009). Many of those new species are regional 
endemics rather than geographically widely distributed lineages (e.g. Botosaneanu et 
al. 1986, Holsinger 1984).

The isopod family Cirolanidae Dana, 1852 is one of the most species rich of the 
free-living families within the Cymothoida Wägele, 1989 comprising more than 500 
known species in 62 genera. Cirolanidae are predominantly marine, with relatively few 
species living in freshwater. The cirolanid species from subterranean waters, such as 
aquifers, groundwater and cave streams, have been predominantly found in anchialine 
systems as well as in freshwater habitats. These anchialine species, like the freshwater 
fauna, were derived from marine ancestors becoming isolated during regressions of 
marine embayments in the Late Cretaceous or Tertiary times (Holsinger et al. 1993). 
Subterranean or groundwater cirolanids are usually completely eyeless, unpigmented 
stygobionts (Botosaneanu et al. 1986, Botosaneanu 2001). Subterranean cirolanids 
were last comprehensively reviewed by Botosaneanu et al. (1986). Since then, 39 new 
species and seven new genera have been described resulting in 26 genera with 91 species 
of stygial anchialine (Bishop et al. 2015; here updated) and freshwater Cirolanidae. 
Notably, the greater Caribbean region can be seen as a hotspot for cirolanid species 
diversity (Iliffe and Botosaneanu 2006). On a more local scale, the Bahamas is the 
most diverse location with eight species in three genera (see species list).

The shallow water habitats of the Bahamas have existed over a long geological time 
scale, at least the constitutive limestone persisted over the last 120 MA (Jaume et al. 2013). 
Combined with tectonic fracturing, extensive karstification produced a vast network of 
voids within the 4448 m thick limestone (Mylroie and Carew 1995). As shown on the 
map in Holsinger et al. (2007, figure 3 p. 1050), the Bahamas have accumulated many 
subterranean cirolanid isopods. The collection of a series of cirolanids from Hatchet Bay 
Cave, Eleuthera, identified as Cirolana troglexuma Botosaneanu & Iliffe, 1997 allowed 
us to reappraise this species, concluding that it neither can be adequately retained in 
Cirolana Leach, 1818, nor placed into any other cirolanid genus.
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Methods

Sampling

All specimens were sampled from the main hall and the western chamber of Hatchet Bay 
Cave using six miniature minnow traps (Figures 1, 2B). Water levels in the cave varied 
tidally but traps remained submerged at the lowest tides. Traps were baited with pieces of 
baitfish and set at depths of 1–3 m for two hours before being collected. Individuals were 
randomly selected from each trap and transported in portable aquaria back to lab facili-
ties at the Cape Eleuthera Institute on Eleuthera island. The collected specimens were 
preserved in centrifuge tubes with 95% ethanol and then shipped overnight to the Ger-
man Centre for Marine Biodiversity Research (DZMB) for further study and imaging.

Classification follows Brandt and Poore (2003), while terminology follows 
Keable (2006) and pereopod orientation Bruce (2009). Pencil drawings were made 
using a Leica DM 2500 compound microscope with a camera lucida. Figures were 
inked manually, digitized and assembled as plates using Adobe Photoshop CS6. The 
photographs of the female (CC-1) and the male (CC-2) were taken by an Olympus 
camera system at ZMH and staples were fused using Helicon Focus software and 
arranged as plate with Photoshop CS6 (Figure 3).

Species descriptions were prepared in DELTA (Descriptive Language for Taxonomy, 
see: Coleman et al. 2010; Dallwitz et al. 1997; Dallwitz 1980; Dallwitz et al. 2006) 
using a general Cirolanidae character set comparing the characters of Cirolana Leach, 
1818 (Table 1). Some integer numeric character states in the description may include 
a zero (0) rather than the more usual ‘without’ or ‘none’; minor details qualifying a 
coded character state are given within parentheses.

Confocal laser scanning microscopy settings

Two adult specimens of Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. 
n. (females ZMH-K45776, ZMH-K45777 and male ZMH-K45769) were used for 
CLSM as indicated in the descriptions below. Before dissection, the specimens were 
stained with 1:1 solution of Congo Red and Acid Fuchsin overnight using procedures 
adapted from Michels and Büntzow (2010). The whole specimens were temporarily 
mounted onto slides with glycerine, and double sided tapes were used to support the 
coverslip. When required, specimens were dissected under a Leica MZ12 stereomicro-
scope. Dissected parts were mounted on slides with glycerine, and self-adhesive plas-
tic reinforcement rings were used to support the coverslip (Kihara and Rocha 2009; 
Michels and Büntzow 2010). Parts of the body of special interest and difficult posi-
tioning due to their tridimensional shape (e.g. female head) were prepared on slides 
using Karo® light corn syrup as mounting medium and double sided tapes were com-
bined in appropriate thickness, between the slide and coverslip, so that the parts were 
not compressed. The material was examined using a Leica TCS SP5 equipped with a 
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Figure 1. Hatchet Bay Cave Main Gallery, Eleuthera, The Bahamas (Photograph).

Table 1. Comparison of generic characters between Lucayalana gen. n. and Cirolana Leach, 1818.

Character Cirolana Lucayalana gen. n.
Frontal lamina – size Extends to antenna bases Does not extend beyond antennula bases
Frontal lamina – size Wide, c. 40% width of clypeus Less than 10% width of clypeus

Frontal lamina – shape Pentagonal or sub-quadrate – 4 or 
5 margins Linear, three margins

Pleonite 1 dorsal Scarcely or not visible Visible
Pleonite 1 ventral Not visibly present Visibly present with ventral structure
Pleonite 3 Without ventral blade With large ventral blade

Antennula Peduncle articles 1 and 2 combined 
lengths greater than article 3 length

Peduncle articles 1 and 2 combined 
lengths less than article 3 length

Pereopod 1 merus With tubercular robust setae With acute robust setae

Leica DM5000 B upright microscope and three visible-light lasers (DPSS 10 mW 561 
nm; HeNe 10 mW 633 nm; Ar 100 mW 458, 476, 488 and 514 nm), combined with 
LAS AF 2.2.1 (Leica Application Suite Advanced Fluorescence) software.

Various lenses were used, depending on the size of the material scanned (Table 2). 
Images were obtained using 561 nm excitation wavelength with 80% acousto-optic 
tunable filter (AOTF). Series of stacks were obtained, collecting overlapping optical 
sections throughout the whole preparation with optimal number of sections accord-
ing to the software. The acquisition resolution was 2048×2048 pixels and the settings 
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Figure 2. A Map showing distribution of Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n. 
(= type locality) within the Bahamas (Tomolo Maps & Design 2016) B Map of Hatchet Bay Cave, 
Eleuthera modified after Mylroie and Mylroie (2009) C showing sampling locality.

applied for the preparations are given in Table 2. Final images were obtained by maxi-
mum projection, and CLSM illustrations were composed and adjusted for contrast 
and brightness using Adobe Photoshop CS4 software.
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Table 2. List of figures with information on microscope lenses and confocal laser scanning microscopy 
(CLSM) settings used for the observation of the specimens; Ch1 and Ch2 = detection channels 1 and 2.

Figure Objective/ 
Numerical aperture

Detected emission 
wavelength (nm)

Detector gain (V)/ 
Amplitude offset (%)

Electronic 
zoom

Pinhole 
aperture (µm)

Figs 5A, B 2.5X/0.07 Ch1: 570–629
Ch2: 629–717

Ch 1: 667.0/ -1.7
Ch 2: 639.0/ -0.8 1.0X 75.7

Fig 5C 2.5X/0.07 Ch1: 570–629
Ch2: 629–717

Ch 1: 667.0/ -1.7
Ch 2: 654.0/ -0.8 1.8X 75.8

Fig 5D 10X/0.4 Ch1: 570–622
Ch2: 622–717

Ch 1: 593.0/ -1.7
Ch 2: 551.0/ -0.8 1.0X 53.0

Fig 6A, B 10X/0.4 Ch1: 570–629
Ch2: 629–717

Ch 1: 554.0/ -1.7
Ch 2: 533.0/ -0.8 1.0X 53.0

Fig 6A’, B’ 40X/0.75 Ch1: 570–629
Ch2: 629–717

Ch 1: 630.0/ -1.7
Ch 2: 609.0/ -0.8 1.0X 113.2

Fig 6C 10X/0.4 Ch1: 570–629
Ch2: 629–717

Ch 1: 542.0/ -1.7
Ch 2: 525.0/ -0.8 1.0X 53.0

Fig 6D 10X/0.4 Ch1: 570–629
Ch2: 629–717

Ch 1: 536.0/ -1.7
Ch 2: 515.0/ -0.8 1.0X 53.0

Fig 6E 10X/0.4 Ch1: 570–629
Ch2: 629–717

Ch 1: 550.0/ -1.7
Ch 2: 529.0/ -0.8 1.6X 53.0

Fig 6E’ 40X/0.75 Ch1: 570–629
Ch2: 629–717

Ch 1: 585.0/ -1.7
Ch 2: 564.0/ -0.8 1.0X 113.2

Figs 7A–C 10X/0.4 Ch1: 570–622
Ch2: 622–717

Ch 1: 560.0/ -1.7
Ch 2: 539.0/ -0.8 1.0X 53.0

Fig 7D 40X/0.75 Ch1: 570–629
Ch2: 629–717

Ch 1: 488.0/ -1.7
Ch 2: 472.0/ -0.8 1.0X 53.0

Fig 7D’ 40X/0.75 Ch1: 570–629
Ch2: 629–717

Ch 1: 572.0/ -1.7
Ch 2: 567.0/ -0.8 1.0X 113.2

Molecular methods

DNA extraction was performed as outlined by Brix et al. (2011). PCR, purification 
and sequencing methods were applied as described in Brix et al. (2014). Purified 
PCR products were sent for sequencing to GATC Biotech, Germany. The nuclear 
ribosomal small subunit (18S) was sequenced for three specimens, while the mito-
chondrial large ribosomal subunit (16S) and the mitochondrial cytochrome c oxidase 
subunit 1 (COI) gene were sequenced for 15 and 14 specimens, respectively. Speci-
mens used for molecular analyses are listed in Table 3. Primers used for PCR were 
1471/1472 (Crandall and Fitzpatrick 1996), HCO2198/LCO1492 for COI (Folmer 
et al. 1994), 16S SF/16S SR for 16S rDNA (Tsang et al. 2009, Riehl et al. 2014) 
and 18A1neu/1800neu for 18S rDNA (Raupach et al. 2004). PCR was done using 
Illustra Puretaq PCR Beads 0.2 mL (VWR International) for a total volume of 25 µL 
using 19 µl H20, 1 µL primer each and 4 µL DNA: 1) initial setup (94°C, 5 min), 
2) denaturation (94°C, 30 s), annealing (48, 50 or 52°C, 45 s), elongation (72°C, 
60 s), final elongation (72°C, 5 min), cooling (4 min), in total 38 cycles (step 2–4). 
Sequence editing and assembly was performed in Geneious 7.0 (Kearse et al. 2012). 
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Figure 3. Photographs of female (CC-1: ZMH-K45768; A dorsal view C ventral view E lateral view) 
and male (CC-2: ZMH-K45769 B dorsal view D ventral view F lateral view); both before staining for 
CLSM. Scale bar 1mm.
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Alignments for COI and 16S, respectively, were created with the Muscle-plugin in 
Geneious using three iterations. A Neighbor-Joining (NJ) tree based on COI was 
calculated in MEGA6 (Tamura et al. 2013) under the Kimura-2-parameter (K2P) 
substitution model, 1000 bootstrap replicates and with pairwise deletion option. The 
COI-alignment had a final length of 658 bp and comprised our own COI sequences 
(n=15), all COI sequences of Cirolanidae (n=305) and Aegidae (n=7; as outgroup) 
available in the Barcode of Life Datasystem (BOLD) as on the 10/12/2015 and ad-
ditional sequences of six Cirolana spp. (n=10) from NCBI, but see also Rodcharoen 
et al. (2016). Statistical parsimony networks were reconstructed for our COI and 
16S alignments using the TSC network option (Clement et al. 2000) as provided in 
PopART 1.7 (Leigh and Bryant 2015).

Abbreviations

RS – robust seta/e; PMS – plumose marginal seta/e; ITScNB – Institute Royal des Sci-
ences naturelles de Belgique, Bruxelles; QM – Queensland Museum, Australia; ZMA – 
Zoological Museum Amsterdam, now Naturalis Biodiversity Center, Leiden.

Abbreviations used on figures: MdL – mandible; Mxp – maxilliped; P – pereopod; 
Plp – pleopod; Plt – pleotelson; UrP – uropod.

Taxonomy

Order Isopoda Latreille
Suborder Cymothoida Wägele, 1989
Superfamily Cymothooidea Leach, 1814
Family Cirolanidae Dana, 1852

Lucayalana Bruce & Brix, gen. n.
http://zoobank.org/81A33124-9267-415A-9789-A928BC9CC466

Diagnosis (female). Head without rostral point. Frontal lamina short, narrow, less 
than 7% width of labrum, not extending to anterior margin of head; clypeus ventrally 
flat, not blade-like, not projecting. Pleonite 3 extending posteriorly to posterior of 
pleonite 5, laterally overlapping pleonites 4 and 5; ventrally broad, forming a strong 
ventrally directed blade; pleonite 5 as wide as pleotelson anterior margin; pleonites all 
visible in dorsal view. Pereopods 1–7 ambulatory, slender; dactylus short, less than half 
length of propodus. Pereopods 1–3 with ischium superior distal margins weakly pro-
duced, sparsely setose; merus superior distal margin weakly produced, not overriding 
propodus; pereopods 1–3 merus inferior margin RS not molariform; pereopods 5–7 
basis without long PMS, ischium and merus distally without long setae. Vasa defer-
entia opening flush on sternite. Pleopod 1 rami sub-similar in width, exopod about 

http://zoobank.org/81A33124-9267-415A-9789-A928BC9CC466
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⅔ width exopod, peduncle wider than long. Uropodal rami lamellar, subequal in size, 
with marginal robust and plumose setae.

Description. Head approximately 65% as wide as pereonite 1, anterior margin 
sub-truncate, rostrum absent. Body surfaces unornamented; pereonite 1 about 1.7 
times as long as pereonite 2 in dorsal view. Pleon unornamented, about 16% BL, with 
5 visible unfused segments, pleonite 1 partly visible in dorsal view; pleonite 2 postero-
lateral margin weakly produced; those of pleonite 3 extending to posterior of pleonite 
5. Pleotelson without longitudinal carinae, ridges or without tubercles; posterior mar-
gin with PMS and RS.

Antennula peduncle articles 1 and 2 not fused; peduncular article 2 at right angles 
to article 1; articles 1 and 2 short, combined length about length of article 3; articles 2 
and 3 collinear flagellum 1.4x longer than peduncle; without callynophore. Antenna 
peduncle comprised of 5 articles, peduncular articles 1–3 shortest, articles 4 and 5 
longest, 5 longer than 4; flagellum about twice as long as peduncle.

Frontal lamina short, ventrally flat, lanceolate, not extending to anterior margin of 
antennal peduncle, posteriorly abutting clypeus. Clypeus ventral surface not project-
ing relative to frontal lamina. Mandible incisors wide, right incisor tricuspidate; spine 
row with 4–5 RS. Maxillule mesial lobe with 3 CP RS. Maxilliped palp article 4 mesial 
margin weakly lobed; lateral margins of articles 2–5 with long setae; articles 3 and 4 
distal margin width greater than proximal margin of article 4 and 5 respectively; endite 
with 2 coupling hooks.

Pereopods 1–7 dactylus with elongate secondary unguis present. Pereopod 1 dac-
tylus shorter than palm; simple RS opposing dactylus. Pereopod 7 basis not noticeably 
broader in distal half compared to proximal half; margins with few discontinuous se-
tae; ischium and merus not flattened, distal margin weakly expanded, inferior margins 
with few setae; inferodistal angles of ischium.

Pleopod 1 rami lamellar; endopod about 0.6 as wide as exopod, 2.4 times as long 
as wide. Pleopod 2 appendix masculina longer than endopod. Pleopods 1–5 with PMS 
present on all exopods and endopods of pleopods 1–4; endopod of pleopod 5 with 
small proximomesial lobe. Uropod peduncle mesial margin strongly produced; exopod 
lateral margin not excised.

Male. To date only one male specimen (described herein) has been collected. Ap-
pendix masculina inserted basally, slender; penial processes flat, quadrate, widely sepa-
rate lobes.

Type species. Cirolana troglexuma Botosaneanu & Iliffe, 1997; by monotypy and 
original designation.

Remarks. Lucayalana gen. n. presents a suite of characters little derived from free-
living cirolanid genera such as Cirolana, reflected by the original placing of Cirolana 
troglexuma in that genus (Botosaneanu and Iliffe 1997). The pleon, mouthparts, 
pereopods and pleopods are relatively unmodified and these characters differ to that 
seen in many of the subterranean or stygial genera. Typical of stygian cirolanids, the 
genus lacks eyes, the antennular and antennal flagellum are relatively elongate and the 
pereopods are somewhat slender. Characters that exclude the species from Cirolana 
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are the short and narrow frontal lamina (vs ventrally flat, pentagonal or quadrate and 
relatively wide, and extending between antennular bases to the anterior margin of head 
in Cirolana), antennula peduncle articles 1 and 2 being at approximately right angles 
(co-linear in Cirolana), with article 3 being slightly longer (1.1) than the combined 
lengths of articles 1 and 2 (shorter in Cirolana); and the lack of tubercular robust setae 
on the inferior margin of the merus of pereopods 1–3 (present in Cirolana). The shape 
of the anterior margin of the head is unusual in being subtruncate, although this does 
vary within genera. Species of Cirolana with a rounded anterior margin to the head 
that lacks a rostral point all belong to the ‘tuberculate’ group of species (see Bruce 
1986; Bruce 1995), characterized by the presence of dorsal tubercles on the pereonites, 
pleon and pleotelson and also with a characteristic discontinuous pattern or robust 
setae on the uropodal exopod lateral margin.

The difference in frontal lamina shape and size between Lucayalana and Cirolana 
is substantial. In Cirolana the frontal lamina is pentagonal, with five straight margins, 
as is seen in the type species Cirolana cranchii Leach, 1818 (see Bruce and Ellis 1983) 
and species Cirolana ‘parva-group’ (see Bruce and Bowman 1982, Bruce 2004), or 
quadrate with two more-or-less straight and parallel lateral margins and a rounded 
or truncate anterior margin that may or may not project (e.g. Bruce 1995, Bruce 
and Brandt 2006). In most species of Cirolana the frontal lamina extends anteriorly 
past the antennula bases (see previous citations), and ranges in proportion from 1.5 
to 3.0 as long as posterior width. In Lucayalana the frontal lamina is short, lacks the 
broad flat ventral surface and does not extend anteriorly beyond the antennula and 
has two weakly convex lateral margins that form an acute or narrowly rounded point. 
The frontal lamina Cirolana can be considered broad–that is the posterior width is 
approximately 0.4 (40%) the width of the clypeus; in Lucayalana the posterior width 
is less than 10% (c. 0.07) the width of the clypeus.

Pleon morphology is generally consistent within cirolanid genera with regard to 
a characters such as fusion, extent of the pleonite posterolateral margins, expansion 
of posterolateral margins and also relative size of the pleon (as a percentage of total 
body length) and the number of visible somites. Bowman (1975, fig. 9) summarised 
and illustrated nine types of pleonal arrangement from full fusion of all pleonites and 
pleotelson to all pleonites unfused. The pleon type of Lucayalana does not conform to 
any of these and is similar to the pleon morphology shown by species of the Cirolana 
“parva-group” (see Bruce 2004), and also Antrolana Bowman, 1964, where pleonites 3 
and 4 both extend posteriorly to or beyond or the anterior margin of the pleotelson, with 
pleonite 3 laterally overlapping pleonites 4 and 5; pleonites 4 and 5 are not narrower 
than the anterior margin of the pleon. A similar pleon morphology is also shown by 
genera such as Aatolana Bruce, 1993 and Plakolana Bruce, 1993 and also the unrelated 
genus Dolicholana Bruce, 1986, but in that case the posterolateral margins of pleonite 
3 are expanded. Lucayalana differs from the genera mentioned in that the ventral part 
of pleonite 3 is expanded and forms a strongly developed and ventrally directed blade, 
a character lacking in Cirolana; furthermore species of Cirolana typically have a short 
pleon (c. 10–12% of total body length) with pleonite1 largely or wholly concealed 
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by pereonite 7 in dorsal view; in Lucayalana pleonite 1 is dorsally largely visible and 
consequently the pleon is proportionally longer (16% body length).

The most similar genus is the monotypic Antrolana, known only from freshwater 
caves in Virginia and West Virginia, USA. Antrolana differs in having antennula pe-
duncular articles co-linear, and article 2 notable longer than in the new genus; pleonite 
3 posterolateral margins that do not extend posteriorly beyond pleonite 4 (vs extending 
to anterior margin of pleotelson), the endopods of pleopods 3–5 are significantly smaller 
than exopod (vs rami subsimilar). There are other differences between the two genera 
though we would be reluctant to attach generic significance to them at this point–these 
include shorter pereopodal dactylus, lack of penial processes, and in Lucayalana a sub-
truncate anterior margin of the head. The molecular delineation based on COI likewise 
demonstrates that our species of Lucayalana and Antrolana lira are genetically distinct.

There are three other genera that are superficially similar to Lucayalana, but all 
can be separated by one or more distinct and easily observed characters. The genus 
Haptolana Bowman, 1966 (worldwide, and see Bruce 2008) has haptorial pereopods 
and an anteriorly wide frontal lamina; Speocirolana Bolívar y Pieltain, 1950 (Texas–
Mexico region) has pleonites 4 and 5 distinctly narrower than the pleotelson anterior 
margin and also has haptorial pereopods. Molecular data available for two species of 
Speocirolana, show that Lucayalana is distinct. Sphaeromides Dollfus, 1897 (France, 
Bulgaria and former Yugoslavia) has an elongate frontal lamina that is widest distally 
and anterior pereopods with haptorial dactylus; and pleopod 1 endopod is elongate, 
3.5 times as long as wide (Racovitza 1912).

The monotypic Exumalana Botosaneanu & Iliffe, 2003 (also Bahamas) 
superficially appears distinct from Lucayalana gen. n., with a far wider body shape, 
and wide, broadly rounded pleotelson. The appendages, notably antennae, antennulae, 
mouthparts and pereopods do not markedly differ from free-living genera similar to 
Cirolana or Lucayalana gen. n. In contrast Exumalana has a long, wide and anteriorly 
rounded frontal lamina (vs short anteriorly acute in Lucayalana), the anterior margin 
of the head is smoothly rounded with a rostral point (vs truncate, no rostral point), 
and the uropodal peduncle is broad and flat, with rounded rami the exopod of which is 
less than half the length of peduncle and about 0.6 length of endopod (vs rami longer 
than peduncle, distally acute).

Etymology. The name is derived from the Lucayan peoples, the original inhabit-
ants of the Bahamas.

Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n.

Cirolana (C.) troglexuma Botosaneanu & Iliffe, 1997: 79, figs 1–24.– 1999: 96.
Cirolana (Cirolana) troglexuma. –Iliffe and Botosaneanu 2006: 15, plate 1b, fig. 19.

Type locality. Oven Rock Cave, [Great Guana Cay] Exuma Cays, The Bahamas; 
habitat is anchialine.
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Material examined. Holotype ♀ (non-ovig. c. 10 mm – dissected, body in three 
pieces) Oven Rock Cave, Great Guana Cay, Exuma Cays, The Bahamas, 22 May 
1995, depth 1–22 m, plankton net, coll. T.M Iliffe. (USNM 285818).

Non-type material: ♀ (non-ovig. 8.5 mm), Great Guana Cay, Exuma Cays, 
Bahamas; Oven Rock Cave, 31 March 1988, coll. TM Iliffe. (ZMA CRUS.I.204411). 
♀ (non-ovig. 7.8 mm), Great Guana Cay, Exuma Cays, Bahamas; Oven Rock Cave, 
14 August 2002, coll. TM Iliffe. (IRScNB-KBIN I.G. 29862; INV.112511). ♀ (non-
ovig. 7.4 mm), manca (4.1 mm), Cat Island, Central Bahamas, Big Fountain Cave, 18 
August 2004, coll. TM Iliffe. (ZMA CRUS.I.204653). 1 ♂ (6.9 mm), 28 ♀ (7.4–10.7 
mm), Eleuthera, Bahamas; Hatchet Bay Cave, seaward cave entrance 25°21’59.9”N, 
76°31’12.8”W, landward entrance at 25°21’56.5”N, 76° 31’ 20.8”W, November 
2014, coll. N Balfour (ZMH K45768–45777 (♂ K45769); QM W34360).

Also examined. Cirolana willeyi Stebbing, 1904: ♂ (7.8 mm), Sungei Mandai, 
Singapore, 01°26.094'N, 03°45.656'E, 26 October 2012, mangroves, coll. YL D 
Fautin and R Tan (QM unreg). Cirolana erodiae Bruce, 1986: ♂ (7.8 mm), Lizard 
Island, April 2008, coral rubble, coll. C. Glasby (QM W30557).

Description. Body 2.2 times as long as greatest width, dorsal surfaces smooth, 
widest at pereonite 5, lateral margins weakly ovate. Rostral point absent. Pereonite 1 
and coxae 2–3 each with posteroventral angle right-angled; coxae 5–7 with incomplete 
oblique carina; posterior margins of pereonites 5–7 smooth. Pleon with pleonite 1 
largely concealed by pereonite 7; pleonites 3–5 posterior margin smooth; posterolat-
eral angles of pleonite 2 forming acute point, not posteriorly produced; pleonite 3 with 
posterolateral margins extending clearly beyond posterior margin of pleonite 5, acute; 
clearly extending beyond posterior margin of pleonite 5, posterolateral margin of ple-
onite 4 acute. Pleotelson 0.75 times as long as anterior width, dorsal surface without 
longitudinal carina; lateral margins weakly convex, margins smooth, posterior margin 
sub-truncate, without median point, with 10 robust setae.

Antennula peduncle articles 1 and 2 distinct, articulated; article 2 0.9 times as long 
as article 1, articles 3 and 4 1.1 times as long as combined lengths of articles 1 and 2, 
article 3 3.5 times as long as wide; flagellum with 12 articles, extending to posterior of 
pereonite 1. Antenna peduncle article 4 2.3 times as long as wide, 2.3 times as long as 
article 3, inferior margin with 0 plumose setae, and 2 short simple setae; article 5 1.4 
times as long as article 4, 4.5 times as long as wide, inferior margin with 2 pappose 
setae, anterodistal angle with cluster of 2 short simple setae (and 3 pappose setae); fla-
gellum with 21 articles, extending to pereonite 5.

Frontal lamina lanceolate, 2.9 times as wide as long posterior width, lateral mar-
gins converging to anterior, anterior margin acute.

Mandible molar process with proximal cluster of long simple setae; right mandi-
ble spine row composed of 7 spines; mandible palp article 2 with 9 distolateral setae, 
mandible palp article 3 with 7 robust biserrate setae (in two groups). Maxillula mesial 
lobe with 3 large and circumplumose RS; lateral lobe with 13 RS. Maxilla lateral lobe 
with 5 long simple setae; middle lobe with 14 long simple setae (2 plumose); mesial 
lobe with 5 distal simple setae, with 6 proximal simple and plumose setae. Maxilliped 
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Figure 4. Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n. A female: habitus dor-
sal (ZMH-K45768) B female, habitus lateral view (ZMH-K45768) C female head dorsal view (QM 
W34360, #13/14) D paratype female head, ventral perpendicular view (QM W34360, #13/14). Scale 
bars 1 mm.
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Figure 5. Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n. CLSM female (ZMH-K45776): 
habitus dorsal & habitus ventral, head perpendicular view, head ventral view.
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Figure 6. Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n. CLSM female (ZMH-K45776): 
pereopods and uropods, Pleotelson margin, RS.
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Figure 7. Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n. CLSM male (ZMH-K45769): 
habitus dorsal & habitus ventral, head ventral view, Plp2.
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Figure 8. Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n., female (ZMH-K45768): 
A MdL A' Detail (23 setae + 8 slender setae + numerous fine setae) A'' turned view on IP B maxillula 
C Maxilla D Mxp D' ventral view Mxp. Scale bars 0.1 mm.
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Figure 9. Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n. female (ZMH-K45768): 
A Plp1 C P7 D Antennula D' detail on setae on peduncle D'' detail on flagellum E Antenna. Holotype 
male: B Plp2. Scale bars 0.1 mm.
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Figure 10. Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n. female (ZMH-K45768): 
A P1 B P2 B' detail of setae on carpus C P3 C' detail of dactylus claw. Scale bars 0.1 mm.
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Figure 11. Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n. female (ZMH-K45768): 
A P4 B P5 C P6. Scale bars 0.1 mm.
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Figure 12. Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n. female (ZMH-K45768): Urp 
14/14 (details of uropod from QM W34360, #14/14); ZMH-K45768: pleopods and Plt margin. Scale 
bars 0.1 mm.
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Figure 13. Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n. Comparison of pleonite 
shapes with two other cirolanid species. A1-3 Lucayalana troglexuma (MTQ-W34360) B1-3 Cirolana 
erodiae Bruce, 1986 (QM W30557) C1-3 Cirolana willeyi Stebbing, 1904 (QM unreg).
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palp article 2 mesial margin with 5 slender setae, lateral margin distally with 2 slender 
setae; article 3 mesial margin with 10 slender setae, lateral margin with 6 slender setae; 
article 4 mesial margin with 12 slender setae, lateral margin with 4 slender setae; article 
5 distal margin 18 setae, lateral margin with 3 setae; endite with 4 long CPS, and 2 
coupling setae.

Pereopod 1 basis 2.4 times as long as greatest width, superior distal angle with 
cluster of 1 acute setae; ischium 0.5 times as long as basis, inferior margin with 2 setae, 
superior distal margin with 1 RS; merus inferior margin with 5 acute RS, set as two 
rows, superior distal angle with 1 setae; carpus inferior margin with 2 RS; propodus 
2.6 times as long as wide, inferior margin with 4 RS; dactylus 0.6 as long as propodus, 
with bifid secondary unguis; inferior margin with setal fringe lacking. Pereopod 2 is-
chium inferior margin with 4 stout, acute RS, superior distal margin with 1 RS (large); 
merus inferior margin with 12 stout acute RS, set as two rows, superior distal margin 
with 4 acute RS; carpus inferodistal angle with 5 RS (2 serrate, 2 simple); propodus 
4.1 as long as wide, with 3 RS; dactylus 0.4 as long as propodus. Pereopod 3 similar 
to pereopod 2. Pereopod 6 similar to pereopod 7. Pereopod 7 basis 2.9 times as long as 
greatest width, superior margin weakly convex, inferior margin with 2 palmate setae; 
ischium 0.4 as long as basis, inferior margin with 2 RS, superior distal angle with 2 RS, 
inferior distal angle with 4 RS; merus 1 as long as ischium, 2.1 times as long as wide, 
inferior margin with 10 RS, superior distal angle with 8 RS, inferior distal angle with 
7 RS; carpus 0.8 as long as ischium, 2.1 times as long as wide, inferior margin with 0 
RS, superior distal angle with 0 RS, inferior distal angle with 5 RS and 3 submarginal 
short RS; propodus 1.1 as long as ischium, 4.3 times as long as wide, inferior margin 
with 3 single RS, superior distal angle with 2 and 1 palmate slender setae, inferior distal 
angle with 2 RS; dactylus 0.4 as long as propodus.

Pleopod 1 exopod 1.4 times as long as wide, lateral margin straight, distally broadly 
rounded, mesial margin strongly convex, with PMS from distal two-thirds, with ~19 
PMS; endopod 2.1 times as long as wide, distally broadly rounded, lateral margin con-
cave, with PMS on distal margin only, mesial margin with PMS on distal margin only, 
endopod with ~10 PMS; peduncle 1.7 times as wide as long; mesial margin with 5 
coupling setae. Pleopod 2 exopod with ~29 PMS, endopod with ~13 PMS. Pleopod 3 
exopod with ~38 PMS, endopod with ~13 PMS. Pleopod 4 exopod with ~38 PMS, en-
dopod with ~8 PMS. Pleopod 5 exopod with ~36 PMS. Pleopods 2–5 peduncle distolat-
eral margin with prominent acute RS, 3–5 endopods without distomesial serrate scales.

Uropod peduncle ventrolateral margin with 3 RS, lateral margin with medial short 
acute RS, posterior lobe about one-half as long as endopod; rami extending beyond 
pleotelson, marginal setae in single tier, apices acute. Endopod apically not bifid; lat-
eral margin weakly convex, proximal lateral margin with 1 RS; distal lateral margin 
with 2 RS, mesial margin weakly convex, with 8 RS. Exopod not extending to end of 
endopod, 3.1 times as long as greatest width, apically not bifid; lateral margin weakly 
convex, with 6 RS; mesial margin convex, with 5 RS.

Male. Similar to female but for sexual characters. Appendix masculina 1.7 times 
as long as endopod, 17.0 times as along as proximal width, apex with short acuminate 
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tip. Penial processes separated by 20% width of sternite, flat quadrate lobes, width 
1.04 length.

Variation. Many specimens had the robust setae missing, so precise counts could 
not be obtained from all specimens. The number of marginal robust setae on the pleo-
telson (n=12) ranges from 6 to 10, with 8 (42%) or 9 (25%) being most frequent. 
Uropodal exopod later margin robust setae (n=20): 5–7, with 5 (55%) and 6 (most 
frequent 40%), 7 once; mesial margin robust setae (n=21) with 4–7, with 6 (52%) 
and 5 (43%) most frequent. ++ later margin robust setae (n=18): 1+1 (33%) or 2+1 
(77%); mesial margin with 6–16 robust setae (n=24), with only 6 (17%) and 9 (21%) 
occurring more than twice. These data are from the Eleuthera series, specimens from 
the Exuma Cays all fall within this range.

The range of variation in the robust setae of the uropodal endopod mesial margin is 
unusual within the family. Also unusual is the difference in the shape of the pleotelson 
posterior margin, for the most being subtruncate with the uropodal rami extending 
beyond the posterior margin of the pleotelson (e.g. Figures 4A, 5A) except for the single 
male that has angled posterior margins with a clear median point of inflection with the 
uropodal rami extending to but not beyond the posterior pleotelson margin (Figure 
7A). Sexual dimorphism is present in several genera of Cirolanidae, usually in the pleo-
telson and uropodal rami. Mature males of species of Cirolana in the so-called “tuber-
culate group” (see Bruce 1986) may have a differently shaped pleotelson and uropodal 
rami with more setae, than do the females. Such species include Cirolana comata Ke-
able, 2001, Cirolana pleonastica Stebbing, 1900 (see Bruce 1994) and Cirolana wongat 
Bruce, 1994. Mature males of several species of the Cirolana “parva-group” have a dense 
setose fringe on the inferior margin of pereopod 1 that is absent in females.

Remarks. The species can be identified by the generic characters, the small and 
anteriorly acute frontal lamina together with the pleonite morphology, notably the 
ventral expansion of the lateral margin of pleonite 2, distinguishing the species from 
all other cave cirolanids in the region. Molecular identification is possible using the 
species DNA barcodes.

Distribution. Previous records are from anchialine caves on Great Exuma Is-
land (Oven Rock Cave), Cat Island, Grand Guana Cay (one of the Exuma Cays) and 
Eleuthera; all are on the Great Bahama Bank, a shallow water platform surrounded on 
all sides by deep ocean waters.

Molecular results

The mitochondrial COI and 16S loci for 14 and 15 specimens (incl. the single male) 
(Tab. 3) were investigated, respectively. Furthermore, the nuclear 18S rDNA locus was 
obtained for three specimens (the single male and two females). Final alignments had 
a length of 658 bp (COI), 382 bp (16S) and 2645 bp (18S), respectively.

The COI overview based on additional sequence data of cirolanid specimens stored 
in the public databases BOLD and NCBI indicates that all individuals from Hatchet 
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Bay Cave constitute a single species and that this species is genetically distinct to all spe-
cies we were able to compare to, i.e. had a deposited COI sequences (Fig. 14A). Those 
species include the cirolanid genera Antrolana, Bathynomus A. Milne-Edwards, 1879 

Figure 14. Lucayalana troglexuma (Botosaneanu & Iliffe, 1997), comb. n. A NJ-topology of Lucayalana 
and all other cirolanid genera with available COI data in NCBI and BOLD, including Aegidae as 
outgroup taxa. Bootstrap support values are indicated at the branches. L. troglexuma and species of the 
genus Cirolana are highlighted in bold red and bold black, respectively B COI haplotype network of L. 
troglexuma. H1–H8: individual haplotypes. The asterisks (*) indicates the haplotype containing the single 
male specimen. Haplotype size is proportional to its frequency in the total dataset C 16S haplotype net-
work of L. troglexuma. H1–H4: individual haplotypes. The asterisks (*) indicates the haplotype containing 
the single male specimen. Haplotype size is proportional to its frequency in the total dataset.
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(and 1879b), Cirolana, Cirolanides Benedict, 1896, Eurydice Leach, 1815, Excirolana 
Richardson, 1912, Natatolana Bruce 1981, Speocirolana and Sphaerolana Cole and 
Minckley, 1970. The COI statistical parsimony network demonstrate eight haplo-
types (Fig. 14B). The sequence of the single male specimen is shared by three other 
females (COI haplotype 1). The individual haplotypes are separated by a maximum 
of eight mutations, i.e. between COI haplotype 1 and haplotype 8. The 16S network 
depicts four haplotypes (Fig. 14C), which demonstrate a maximum of four mutations 
between 16S haplotype 3 and haplotype 4. The 16S sequence of the male is identical 
with the sequences of eight females (16S haplotype 1). Finally, all three nuclear 18S 
sequences were identical.

Geological history and habitat description

The Bahamas archipelago is subdivided into a series of large shallow water platforms, 
referred to as banks, which had their origins during the initial stages of the formation 
of the Atlantic Ocean in the Early Cretaceous (Mullins and Lynts 1977). The largest 
of these banks, the Great Bahama Bank, includes the islands of Eleuthera, Exumas and 
Cat, among others. Drill cores have confirmed that these banks consist of continuous 
series of shallow water derived carbonates at least 4,500 m in thickness (Meyerhoff and 
Hatten 1974). Entire platforms have subsided under their own weight at an average 
rate of 3.6 cm per 1,000 years but are maintained in their position relative to sea level 
by carbonate deposition (Lynts 1970). The banks, where water depths are typically 
shallower than 25 m, are separated from one another by wide, steep walled channels 
reaching depths to 5,000 m (Andrews et al. 1970).

Since the beginning of the Pleistocene, the Bahama banks have been greatly 
impacted by changing ice age sea levels. The Banks were dry land during past ice 
ages (Richards et al. 1994), when sea level was as much as 120 meters lower than at 
present (Siddall et al. 2003); thus the land area of the Bahamas today represents only 
a small fraction of their prehistoric extent. When they were exposed to the atmos-
phere, the karstic limestone was subjected to chemical weathering that created the 
numerous caves and water filled sinkholes locally referred to as blue holes (Mylroie 
et al. 1995).

The modern day Bahamian Islands were not formed by coral reefs but instead by 
the precipitation of ooid sands in the shallows of these large carbonate platforms dur-
ing high sea stands in the mid to late Quaternary. Ensuing periods of low sea levels 
exposed these sands to the atmosphere and, blown by wind (eolian deposition), the 
dune ridges and dry surfaces of the islands took shape (Sealey 2006).

Hatchet Bay Cave on Eleuthera is one of the largest known flank margin caves 
in the Bahamas (Mylroie and Mylroie 2013). It is believed to have formed by mix-
ing dissolution in a fresh-water lens during the last interglacial sea-level highstand 
at 125,000 years BP (i.e. Before Present) when sea level was about +6 m elevation. 
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The cave developed on three levels. The uppermost entrance chamber, floored by 
blocks of collapse limestone, contains inactive stalactites and stalagmites and is in-
habited by a colony of bats. An extensive middle level, reached by ladder, contains 
dry passages and larger chambers of phreatic origin. The lowest level, also accessible 
by ladder, contains a tidally fluctuating anchialine pool with water depths to 3 m. 
Surface water on 15 June 1986 had a salinity of 32‰. In addition to L. troglexuma, 
other stygobiont species collected from this pool included the halocyprid ostracods 
Humphreysella bahamensis (Kornicker & Iliffe, 1989) and Deeveya jillae Kornicker 
& Iliffe, 1989, the cyclopid copepods Speleoithona eleutherensis Rocha & Iliffe, 1991 
and Troglocyclops janstocki Rocha & Iliffe, 1994, and the polynoid polychaete Pelago-
macellicephala iliffei Pettibone, 1985.

Ecology and biogeography of Lucayalana

Although studies of the anchialine fauna of the Bahamas have been ongoing for 
more than 30 years, hundreds of caves remain to be investigated and few have been 
thoroughly surveyed or explored such that numerous species likely remain undiscovered 
or undescribed. Today, the Bahamas has the richest fauna of stygobiont anchialine 
crustaceans from any area in the world. In total, 123 crustacean species have been 
recorded from Bahama’s caves, many to the same genera (e.g. Balinella Fosshagen, 
Boxshall & Iliffe, 2001, Exumella Fosshagen, 1970, Humphreysella Kornicker & 
Danielopol in Kornicker, Danielopol & Humphreys, 2006, Procaris Chase & Manning, 
1972, Spelaeoecia Angel & Iliffe, 1987, Tulumella Bowman & Iliffe, 1988, Typhlatya 
Creaser, 1936) or even species (e.g. Barbouria cubensis von Martens, 1872, Janicea 
antiguensis Chase, 1972, Parhippolyte sterreri (Hart & Manning, 1981)) that inhabit 
anchialine caves in Cuba and Yucatan (Source: www.tamug.edu/cavebiology/Bahamas/
BahamaIntro.html). In the case of peracarid crustaceans, the Bahamian fauna includes 
11 cumacean, seven amphipod, three mysid and 12 isopod species (Jaume et al. 2013, 
Pesce and Iliffe 2010). Most of these species represent exclusively anchialine taxa 
(Daenekas et al. 2009) and nearly all are endemic (see www.cavebiology.com).

Morphological variation and genetic diversity of Lucayalana

Specimens of L. troglexuma females show minimal morphological variation at the three 
locations (Exuma Cays, Cat Island and Eleuthera), and all evidence indicate that there 
is a single species; although additional sequence data from other known cave popula-
tions would help to understand if genetic radiation occurred. So far, the molecular 
data (i.e. CO1) from the Hatchet Bay Cave specimens show a high amount of genetic 
diversity, when related to the number of sequenced specimens indicating i) an old spe-
cies; ii) a high mutation rate; or iii) a large effective population size.

http://www.tamug.edu/cavebiology/Bahamas/BahamaIntro.html
http://www.tamug.edu/cavebiology/Bahamas/BahamaIntro.html
http://www.cavebiology.com
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Implication of multi-island distribution of Lucayalana in relation to Bahamian 
biogeography

Hypothesis 1: One single, widespread species with gene flow

Hypothetically the different caves may be interconnected by an underground network 
of cracks and crevices, i.e. the crevicular system as proposed by Iliffe (1990), large 
enough for L. troglexuma individuals to pass through. Furthermore, prior to about 
10,000 years BP and for most of the preceding 500,000 years, sea level would have 
been low enough that the entire top of the Great Bahama Bank would have been emer-
gent and all islands interconnected into a single, much larger land mass. Due to the 
highly porous, karstic nature of the limestone, groundwater would have receded along 
with ice age sea levels as confirmed by dating of submerged speleothems from now 
underwater caves (Richards et al. 1994). Thus, the only anchialine habitat that would 
have been available at that time must have been in much deeper subterranean systems 
(>120 m below present sea level) that are currently inaccessible and consequently un-
known due to human physiological limitations for deep diving. Phylogenetic analyses 
of stygobiont annelid Pelagomacellicephala iliffei Pettibone, 1985 populations inhabit-
ing anchialine caves on four islands from the Great Bahama Bank provides support for 
crevicular dispersal within, but not between islands (Gonzalez et al. 2017). In addi-
tion, some anchialine taxa including remipedes, halocyprid ostracods, etc. have been 
discovered in wholly marine, sub sea floor caves raising questions as to the true extent 
of the anchialine habitat.

Hypothesis 2: Several isolated, cryptic species

Although the majority of Bahama’s anchialine species are endemic and so far known 
only from a single cave or adjacent caves that are likely connected, several anchialine 
crustaceans are more widespread such as the cirolanid isopod Bahalana yagerae (Car-
penter, 1994) and the remipede Cryptocorynetes longulus Wollerman, Koenmann and 
Iliffe, 2007 occurring on both the Great Bahama and Little Bahama Banks. This may 
imply a more recent marine colonisation of the cave aquifers from marine ancestors. 
Since molecular comparisons among these and most other anomalously distributed 
cave populations have not been carried out, it is unknown if any of them include 
cryptic species. Two anchialine remipede populations from the Yucatan Peninsula have 
been identified as cryptic species (Neiber et al. 2012, Olesen pers. comm.).

The limestone caves of the Bahamas have likely persisted as habitat over the last 
120 MA and the buffered environment may partly explain their unusual accumulation 
of subterranean taxa (Jaume et al. 2013). During this time period, the populations 
of L. troglexuma in the caves may have been isolated through changes in sea level 
or cave collapse leading to the erection of physical, environmental (e.g. salinity, 
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dissolved oxygen levels), hydrological, ecological, or other barriers such that individual 
populations could development as cryptic species.

It is of interest that two species of cirolanid, Bahalana yagerae and L. troglexuma, 
occur on more than one island. Distant multi-site distributions are uncommon in 
aquatic stygial isopods, but known for several other species of cirolanids such Antrolana 
lira (see Holsinger et al. 1994; see also Iliffe and Botosaneanu 2006). Assessment of 
these separate populations using molecular data could answer several questions such as 
the degree of population differentiation, the potential presence of cryptic species and 
the level of genetic diversity.

Stygobiont cirolanid isopods from the Bahamas Archipelago

Bahalana abacoana Botosaneanu & Iliffe, 2006. Abaco Island.
Bahalana caicosana Botosaneanu & Iliffe, 2003b. North and Middle Caicos Islands 

(while politically separate, the Turks and Caicos Islands are a southern extension 
of the island chain that form the Bahamas archipelago).

Bahalana cardiopus Notenboom, 1981. Acklins and Mayaguana Islands.
Bahalana exumina Botosaneanu & Iliffe, 2002. Great Guana Cay, Exuma Cays.
Bahalana geracei Carpenter, 1981. San Salvador Island.
Bahalana yagerae (Carpenter, 1994). Andros Island and Sweeting’s Cay, Grand 

Bahama Island (Botosaneanu and Iliffe 2002); Great Exuma Island (Botosaneanu 
and Iliffe 2003a).

Lucayalana troglexuma (Botosaneanu & Iliffe, 1997). Present study. Great Guana Cay, 
Exuma Cays; Cat Island; Eleuthera.

Exumalana reptans Botosaneanu & Iliffe, 2003a. Norman’s Pond Cay, Exuma Cays.
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