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Abstract
We describe a new species of subterranean amphipod (Amphipoda: Crangonyctidae) in the genus 
Stygobromus from a hypotelminorheic seepage spring at Shepherd Parkway, part of National Capital East 
Parks, Washington, D.C., USA, part of the National Park System, using both morphological and genetic 
approaches. The Anacostia Groundwater Amphipod, S. anacostensis sp. nov. is a member of the S. tenuis 
species group but differs from related congeners based on body size, serrate blade-like edge of both palms 
of gnathopods 1 and 2, presence of rastellate setae on the posterodistal margin of the carpus of gnathopod 
2, and aspects of the second antennae, mandibular palp, pereopods 5–7, uropods 1 and 2, and telson. 
Moreover, S. anacostensis sp. nov. is genetically distinct from S. tenuis in the Washington D.C. metropoli-
tan area. The description of S. anacostensis sp. nov. increases the number of described Stygobromus species 
to eight in the Washington D.C. area and highlights the need for continued biodiversity studies, even in 
regions that have received considerable attention.
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Introduction

The Holarctic amphipod genus Stygobromus Cope, 1872 is comprised of some 137 de-
scribed stygobiotic (obligate subterranean) species and several undescribed forms men-
tioned in the literature, with greatest diversity in the Nearctic (Holsinger 1967, 1974, 
1978; Holsinger and Sawicki 2016; Cannizzaro et al. 2019). Stygobromus diversity is 
high in groundwater habitats of the Piedmont and Atlantic Coastal Plain of Maryland, 
Virginia, and the District of Columbia, from which 13 species have been described, re-
spectively (Holsinger 2009; Holsinger et al. 2011; Culver et al. 2012). Stygobromus are 
extraordinarily diverse in hypotelminorheic habitats and associated seepage springs, a 
shallow subterranean habitat (SSH; Culver et al. 2006; Culver and Pipan 2011, 2014; 
Pipan et al. 2012) in the lower Potomac River Basin in and near the Washington D.C. 
metropolitan area where seven species have been documented (Feller 1997; Hobson 
1997; Culver and Šereg 2004; Holsinger 2009; Pipan et al. 2012).

Over 150 seepage springs have been identified in the Washington D.C. metro-
politan area (Hutchins and Culver 2008; Culver et al. 2012; Keany 2016; Keany et al. 
2019). The study and collection of groundwater fauna from these springs continues to 
improve our understanding on the distribution and ecology of Stygobromus spp. and 
uncover new diversity. Moreover, cryptic genetic variation and diversity is a common 
finding of phylogenetic studies of subterranean fauna (Zakšek et al. 2009; Niemiller et 
al. 2012; Hedin 2015), including amphipods (Lefebure et al. 2006; Finston et al. 2007; 
Bradford et al. 2010; Delic et al. 2017). Niemiller et al. (2018) discovered substantial 
genetic variation up to 13.7% uncorrected sequence divergence at the mitochondrial 
cytochrome oxidase subunit 1 (co1) locus among populations of the S. tenuis species 
group in the Atlantic Coastal Plain of Virginia and Washington, D.C., indicating the 
strong potential for cryptic diversity.

Here we describe S. anacostensis sp. nov. from a hypotelminorheic seepage spring at 
Anacostia Park in metropolitan Washington, District of Columbia based on morpho-
logical examination and genetic analyses of five loci commonly used in phylogenetic 
studies of amphipods (e.g., Englisch and Koenemann 2001; Hou et al. 2007, 2011; 
Kornobis et al. 2011).

Materials and methods

Collection site and approach

Hypotelminorheic habitats and associated seepage springs are shallow subterranean 
habitats, characterized by small flows of water in slight depressions lined with de-
caying leaves (Culver et al. 2006; 2012). Seepage springs drain a small area, often 
less than a hectare, and the habitat only reaches a few meters in depth. The speci-
mens were collected as part of a census of seepage springs in National Capital East 
(NACE), a unit of the National Park Service. Over 150 seeps were discovered during 



A new species of Stygobromus from Washington, D.C., USA 119

this census (Keany et al. 2018). Specimens were preserved in 100% ethanol and 
stored at -20 °C for molecular analysis. Specimens examined were deposited in the 
Smithsonian National Museum of Natural History Invertebrate Zoology Collection 
in Washington, D.C.

Morphological analyses

To enhance the ability to clearly perceive suture lines and setation patterns, prior 
to dissection, most specimens were digested overnight in 400 µl of Zymo Research 
2× digestion buffer, 40 µl of proteinase K and 360 µl of molecular grade water at 
37 °C. Specimens were then stained by being placed into a 2% Lignin Pink solution 
for at least 2 hours. Specimens were dissected using a Leica M125 stereomicroscope 
(Leica, Wetzlar, Germany). Slide preparations were made by mounting dissected ap-
pendages and other body parts in glycerin. These temporary slide mounts were then 
examined, and drawings of pertinent structures were prepared using a Leica DM 
1000 compound microscope outfitted with a drawing tube. Illustrations were final-
ized for publication in Adobe Illustrator CC. ImageJ software (Abramoff et al. 2004) 
was used for body length and appendage measurements. Body length was measured 
as the distance from the rostrum to the base of the telson following the contour of 
the body. Dissected parts were later transferred to small vials of ethanol for storage 
and/or future study.

Nomenclature for setal patterns on the third article of the mandibular palps follow 
Karaman (1969). The following terms are used. “Defining angle” refers to the posterior 
margin of the palm and the distalmost point of the posterior margin of the propodus, 
the area where the tip of the dactylus closes on the propodus; and “clothes-pin setae” 
refers to two notched robust setae present on the basal segments of the pleopod inner 
rami as illustrated in Holsinger (2009).

DNA extraction, amplification, and sequencing

Genomic DNA was extracted for select specimens of S. anacostensis sp. nov. and other 
members of the S. tenuis species group in the Washington, D.C. area (Table 1) using 
the Qiagen DNeasy® Blood and Tissue Kit (Qiagen, Germantown, Maryland, USA) 
following the manufacturer’s protocol. We amplified using polymerase chain reaction 
(PCR) fragments of five loci: 535-bp of mitochondrial cytochrome oxidase subunit 1 
(co1), 428-bp of mitochondrial 16S rDNA (16s), 329-bp of nuclear histone h3 (h3), 
611-bp of nuclear 18S rDNA and 835-bp of nuclear 28S rDNA (28s). PCR primers 
used in this study are presented in Table 2.

PCR products were purified using ExoSAP-IT (Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) and sequenced in both directions using BigDye chemistry at Eu-
rofins Genomics (Louisville, Kentucky, USA). Low quality reads at the ends of forward 
and reverse sequences were trimmed and ambiguous base calls verified manually by 
examining electropherograms. Sequences were assembled into contigs using Chromas 
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v2.6.6 (Technelysium, South Brisbane, Queensland, Australia), then aligned using 
MUSCLE (Edgar 2004) in the program MEGA v.7.0.26 (Kumar et al. 2016). All new 
sequences generated during this study were accessioned into GenBank (Table 1). We 
also included additional sequences available for the S. tenuis species group on GenBank 
accessioned from previous studies (e.g., Aunins et al. 2016; Niemiller et al. 2018; 
Benito et al. 2021; Table 1).

Phylogenetic analyses

Uncorrected p-distances for each locus were calculated in MEGA. Optimal models 
of nucleotide substitution for each locus, including first, second, and third codon 
positions for co1, were determined in jModelTest2 (Darriba et al. 2012) using 
corrected Akaike’s Information Criterion (AICc). Five molecular datasets were as-
sessed: co1, 16s, mtDNA (co1+16s), nucDNA (18s+28s+h3), mtDNA+nucDNA 
(co1+16s+18s+28s+h3). Maximum likelihood (ML) analyses were conducted in 
RAxML v.8 (Stamatakis 2014). A consensus tree was generated for each dataset 
using rapid bootstraps for 1,000 replicates under a GTR+Γ model of evolution. 
Bayesian inference (BI) analyses were conducted in MrBayes v.3.2.6 (Ronquist 
et al. 2012) using a random starting tree with three heated and one cold chain 
under a temperature profile of 0.2. BI analyses were run independently twice for 
50,000,000 generations and sampled every 1,000 generations under the models of 
evolution determined by jModelTest2. Stationarity was determined by examining 
the average standard deviation, assuming stationarity was achieved if the aver-
age standard deviation was < 0.005. In general, the first 12.5 million generations 
(25%) were discarded as burn-in. Convergence of runs was assessed utilizing Trac-
er v. 1.4 (Rambaut and Drummond 2007). The remaining trees from the station-
arity distribution were sampled to generate a 50% majority-rule consensus tree. 

Table 2. Loci and associated PCR primers to infer phylogenetic relationships of Stygobromus in the cur-
rent study.

Locus Name Genome Length Primers Reference(s)
co1 cytochrome 

oxidase subunit 1
mtDNA 535 jgLCO1490 – TITCIACIAAYCAYAARGAYATTGG Geller et al. 

(2013)jgHCO2198 – TAIACYTCIGGRTGICCRAARAAYCA
16s 16S ribosomal 

DNA
mtDNA 428 16STf – GGTAWHYTRACYGTGCTAAG Palumbi et 

al. (1991), 
Macdonald et 

al. (2005)

16Sbr – CCGGTTTGAACTCAGATCATGT

18s 18S ribosomal 
DNA

nuclear 611 18Sf – CCTAYCTGGTTGATCCTGCCAGT Englisch and 
Koenemann 

(2001)
18S700r – CGCGGCTGCTGGCACCAGAC

28s 28S ribosomal 
DNA

nuclear 835 28Sf – TTAGTAGGGGCGACCGAACAGGGAT Hou et al. 
(2007)28S1000r – GACCGATGGGCTTGGACTTTACACC

h3 histone H3 nuclear 329 H3f – AAATAGCYCGTACYAAGCAGAC Corrigan et al. 
(2014)H3r – ATTGAATRTCYTTGGGCATGAT
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Haplotype networks for nuclear loci were constructed using the median-joining 
network algorithm (Bandelt et al. 1999) using the program PopART v1.7 (Leigh 
and Bryant 2015).

Species delimitation

We employed three species delimitation approaches on the mtDNA dataset to define 
molecular operational taxonomic units (MOTUs): Automatic Barcode Gap Discov-
ery (ABGD; Puillandre et al. 2012) and Poisson Tree Processes (PTP; Zhang et al. 
2013), and Multi-rate Poisson Tree Processes (mPTP; Kapli et al. 2017). ABGD 
partitions sequences into candidate species based on a statistically inferred barcode 
gap defined as a significant disparity between pairwise genetic distances, presumably 
between intraspecific and interspecific distances. This process is applied recursively 
to newly obtained groupings of sequences to assess the potential of internal divi-
sion. This method was employed excluding outgroup taxa via the ABGD web server 
(http://wwwabi.snv.jusieu.fr/public/abgd/abgdweb.html) using the Kimura two-
parameter (Kimura 1980) model with a standard X (relative gap width) = 1.5. The 
initial development of the multispecies coalescent PTP model assumed one exponen-
tial distribution for speciation events and one for all coalescent events (Zhang et al. 
2013). The mPTP approach fits speciation events for candidate species to a unique 
exponential distribution (Kapli et al. 2017) rather than assuming one exponential 
distribution for speciation events and one for all coalescent events in PTP models 
(Zhang et al. 2013). Both the PTP and mPTP methods were employed using rooted 
ML trees for each dataset for 10 million generations, with a burn-in discarding the 
first 25% in mptp (Kapli et al. 2017).

Conservation assessment

We conducted IUCN Red List and NatureServe conservation assessments following 
IUCN (2001) and Master et al. (2009). Both assessments rank taxa into one of seven 
unique categories on a continuum of increasing extinction risk. Risk categories were 
calculated using the RAMAS Red List 3.0 (Akcakaya et al. 2007) and the NatureServe 
Rank Calculator v3.186 (Faber-Langendoen et al. 2012) for the IUCN Red List and 
NatureServe assessments, respectively. Geographic range size was calculated using two 
different measures for the extent of occurrence (EOO) and area of occupancy (AOO).

Results

Class Crustacea Brünnich, 1772
Order Amphipoda Latreille, 1816
Infraorder Gammarida Latreille, 1802
Superfamily Crangonyctoidea Bousfield, 1973

http://wwwabi.snv.jusieu.fr/public/abgd/abgdweb.html
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Family Crangonyctidae Bousfield, 1973; emended by Holsinger, 1977
Genus Stygobromus Cope, 1872

Stygobromus anacostensis Cannizzaro, Sawicki, & Niemiller, sp. nov.
https://zoobank.org/D66AA3F8-A53B-41A2-B16C-CA9486A39BC1
Figs 1–8

Type material. Holotype: male 5.9 mm, from USA, Washington, District of Colum-
bia, Anacostia Park, (38.83059°N, -76.9995°W), deposited in the collection of the 
United States National Museum of Natural History, Smithsonian Institution, Wash-
ington, D.C (USNM 1606902); female allotype 5.3 mm (USNM 1606903). Holo-
type male and female allotype collected 18 October 2021 by Lizzy Sartain.

Paratypes: 1 male (USNM 1606904) and 2 females (USNM 1606905–1606906) 
collected on 18 October 2021 by Lizzy Sartain from type locality; 1 female collected 
on 20 September 2021 by Lizzy Sartain from the type locality (USNM 1606907).

Etymology. The specific epithet anacostensis refers to its occurrence in Anacostia 
neighborhood in Washington, D.C., USA. It is part of the Anacostia River drainage.

Type locality. USA. Washington, District of Columbia, hypotelminorheic seep-
age spring in a highly urbanized area that emerges from a small, 2-m high rockface 
ca. 5 m from Malcolm X Avenue SE in Shepherd Parkway (Figs 9, 10, 38.83059°N, 
-76.9995°W). Shepherd Parkway is part of National Capital Parks East. Most indi-
viduals were collected in the water flowing over moss-covered rocks. A few individuals 
were also present in decaying leaves at the base, a more usual hypotelminorheic habitat 
(Culver et al. 2006, 2012). The site is at the extreme tip of Shepherd Parkway, a unit 
of National Capital East (National Park Service). The width of park land is about 20 m 
and is bordered by Malcolm X Avenue. The site was discovered when a park ranger 
noticed extensive ice on the adjacent sidewalk resulting from flow from the seep.

Diagnosis. Small stygomorphic species distinguished from other members of 
the tenuis group by size, largest male 5.9 mm, largest female 5.3 mm and as follows: 
S. tenuis tenuis – by antenna 2 subequal to or shorter than antenna 1; S. tenuis potomacus 
– only 2 C-setae on mandibular palp and up to 8 E-setae; S. allegheniensis – pereopods 
5–7 basis posterior margin weakly convex, and telson tapering distally; S. hayi – by 
significantly less spinose uropods 1 and 2, and telson with significantly fewer apical 
robust setae. Further distinguished from all tenuis group species by gnathopods 1 and 
2 with a serrate blade-like edge running the length of both palms, and by the postero-
distal margin of gnathopod 2 carpus possessing rastellate seta(e).

Description. Male: holotype, USNM 1606902 (Fig. 1A); Size 5.9 mm.
Antennae. Antenna 1 (Fig. 2A): 45% body length, 60% length of antenna 2 (in 

paratype (USNM 1606904); primary flagellum with 18 segments, aesthetascs on most 
segments, aesthetascs shorter than respective segments; accessory flagellum 2-segment-
ed, reaching beyond first segment in length.

Antenna 2 (Fig. 2B): damaged in holotype, description based on paratype (USNM 
1606904); gland cone distinct; peduncle 80% length of flagellum, with weak plumose 

https://zoobank.org/D66AA3F8-A53B-41A2-B16C-CA9486A39BC1
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setules concentrated on postero and anterodistal margins of segments 4 and 5, pe-
duncle segment 4 subequal in length to 5; flagellum 12-segmented, segment 5 with 
robust seta on anterodistal margin and segments 6 and 7 with robust seta placed along 
posterodistal margins, small calceoli-like structures apically on flagellar segments 5–12.

Mouthparts (Figs 2C, D, 3). Mandibles: left mandible (Fig. 2C) incisor 5-dentate, 
lacinia mobilis 5-dentate, with 7 robust serrate and numerous plumose accessory setae; 
molar process reduced with simple seta; palp with 3 segments, second segment 85% 
length of third, with inner margin bearing 8 setae and sparse fine setae; segment 3 with 
2 C-setae, 5 E-setae, 1 B-seta, and 8 plumose D-setae, lacking A-setae; face of article 
covered in numerous, fine pubescent setae.

Figure 1. Stygobromus anacostensis sp. nov., habitus: A holotype male, 5.9 mm (USNM 1606902) 
B Allotype female, 5.3 mm (USNM 1606903). Scale bar: 1 mm.

A

B
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Figure 2. Stygobromus anacostensis sp. nov., Holotype male, 5.9 mm (USNM 1606902): A antenna 
1 (single aesthetasc enlarged) C left mandible (palp omitted) D right mandible (lacinia mobilis en-
larged). Paratype male, 5.7 mm (USNM 1606904): B antenna 2 (single calceolus enlarged). Scale bars: 
0.5 mm (A, B); 0.25 mm (C, D).

AB

C

D
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Right Mandible (Fig. 2D): incisor 4-dentate, lacinia mobilis bifurcate, both lobes 
with numerous protuberances; accessory setae row with 4 robust, serrate setae and 
numerous plumose setae; molar process reduced with simple seta. Palp with 3 articles, 
relative articles length and setation patterns as in left mandible.

Figure 3. Stygobromus anacostensis sp. nov., Paratype male, 5.7 mm (USNM 1606904): A upper lip 
D maxilla 2. Holotype male, 5.9 mm (USNM 1606902): B lower lip C maxilla 1 E maxilliped (distal 
margin of inner plate enlarged). Scale bars: 0.25 mm.

A

B

C

D

E
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Upper Lip (Fig. 3A): rounded, apical margin of labrum with numerous fine setae. 
Lower Lip (Fig. 3B): inner lobes distinct; outer margin of outer lobe sparsely covered 
in fine setae; inner margin of outer lobe heavily setose.

Maxilla 1 (Fig. 3C): missing in holotype, description based on paratype (USNM 
1606904); inner plate with 4 plumose marginal setae and numerous fine, pubescent 
setae covering entire plate; outer plate with 7 apical comb spines, pubescence covering 
inner margin, decreasing laterally and proximally; palp with 2 segments, distal seg-
ment covered in pubescence; subapical margin of distal article with 3 long setae, apical 
margin with 4 setae.

Maxilla 2 (Fig. 3D): missing in holotype, description based on paratype (USNM 
1606904); both inner and outer plates covered in pubescent setae; outer plate not as 
wide as inner plate, not narrowing distally, with numerous distal setae; inner plate nar-
rowing slightly distally, with numerous apical setae and 3 large plumose facial setae.

Maxilliped (Fig. 3E): inner plate shorter than outer plate, with 4 naked cuspidate 
setae 3 setae along apical margin, surface of plate covered in fine pubescence; outer 
plate armed with numerous setae covering inner and apical margins; palp second seg-
ment with numerous marginal setae, third article with numerous marginal/submar-
ginal setae; dactyl with 2 outer setae and 2 inner setae.

Gnathopods. Gnathopod 1 (Fig. 4A): coxal plate with 3 apical setae; basis with 
long setae inserted along anterior, and posterior margins, small patch of pubescence 
on posterodistal corner; ischium with 4 setae and pubescence along posterior margin; 
merus weakly pubescent along posterior surface, numerous distal setae, and robust seta 
along anterior margin; carpus approximately 50% length of propodus with robust seta 
along anterior margin and a group of setae on anterodistal margin, one of which is ap-
proximately 50% length of propodus, posterior margin with single group of plumose 
setae and 6 submarginal setae directed distally; propodus 1.3× longer than broad, with 
1 marginal anterior seta, 4 superior medial setae, with middle group of medial setae 
paired, 4 setae inserted at anterodistal corner, 6 inferior medial setae and numerous 
plumose posterior setae; palm oblique, concave, with serrate blade-like edge running 
the length, 7 outer and 7 inner bifid robust setae, 6 outer setae, and inner seta; inner 
margin of defining angle with 3 bifid robust setae, outer margin with 4 bifid robust 
setae; dactylus with outer seta and 7 short setae covering the entire inner margin and 3 
setae placed along the inner margin at base of nail.

Gnathopod 2 (Fig. 4B): coxal plate with 4 apical setae and facial seta; basis with 
long setae inserted along anterior, and posterior margins, small patch of pubescence 
on posterodistal corner; ischium with 3 setae and pubescence along posterior margin; 
merus with pubescence covering posterior surface and 4 posterodistal setae and robust 
seta along anterior margin; carpus approximately 75% length of propodus, with ro-
bust seta along anterior margin and two setae on anterodistal margin, one of which is 
approximately 33% length of propodus, posterior margin with 4 groups of plumose 
setae, distal-most bearing 3 rastellate setae, and 3 submarginal setae directed distally; 
propodus 1.3× longer than broad, with marginal anterior seta, 5 superior medial se-
tae, distal-most paired, 5 setae inserted at anterodistal corner, 5 inferior medial setae, 
proximal-most paired, and 8 groups of plumose setae along posterior margin; palm 
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oblique, straight, with serrate blade-like edge running the length, 5 outer and 5 inner 
bifid robust setae, 5 outer setae, and 2 inner setae; inner margin of defining angle with 
6 bifid robust setae, outer margin with 5 bifid robust setae; dactylus with outer seta and 
seta placed along the inner margin at base of nail.

Pereopods. Pereopod 3 (Fig. 5A): coxal plate with 5 apical setae; merus 1.4× longer 
than carpus, carpus approximately 85% of propodus in length; dactylus approximately 

Figure 4. Stygobromus anacostensis sp. nov., Holotype male, 5.9 mm (USNM 1606902): A gnathopod 1 
(palm and dactyl enlarged) B gnathopod 2 (rastellate seta, palm and dactyl enlarged). Scale bar: 0.5 mm.

A

B
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50% length of propodus, with plumose seta on posterior margin, 2 setae along anterior 
margin followed by thin seta on medial margin.

Pereopod 4 (Fig. 5B): subequal to pereopod 3 in length; coxal plate armed with 
4 anterior and 3 posterior apical setae; merus approximately 1.6× longer than carpus; 
carpus approximately 60% length of propodus; dactylus approximately 40% length of 
propodus, setation as in pereopod 3.

Pereopod 5 (Fig. 5C): coxal plate large, bilobate with distinct anterior and posterior 
lobes, posterior lobe with 4 robust setae on distal corner; basis posterior margin weakly 
convex with 9 shallow serrations, anterior margin with 6 split-tipped robust setae and 
3 distal split-tipped setae; merus subequal in length to carpus; carpus subequal to pro-
podus, dactylus approximately 50% length of propodus, setation as in pereopod 4.

Pereopod 6 (Fig. 5D): coxal plate bilobate, with weakly produced anterior lobe, 
posterior lobe bearing 2 robust apical setae; basis posterior margin weakly convex with 
8 serrations, anterior margin with 5 split-tipped robust setae, and 3 robust setae at 
anterodistal corner; merus approximately 1.2× length of carpus; carpus approximately 
90% of propodus in length, dactylus approximately 50% length of propodus, setation 
as in pereopod 5.

Pereopod 7 (Fig. 5E): coxal plate small, subtriangular, with 4 posterior setae; basis 
posterior margin weakly convex with 10 serrations and straight distal corner, ante-
rior margin with 8 split-tipped robust setae, and 2 robust setae at anterodistal corner; 
merus subequal in length to carpus; carpus approximately 80% length of propodus, 
dactylus approximately 40% length of propodus, setation as in pereopods 5, 6.

Gills (Fig. 5F). coxal gills on somites 2–6, somites 6 and 7 with bifurcate sternal gills.
Pleon. Epimera (Fig. 6A): first epimeron ventral margin with robust seta, distopos-

terior corner rounded, posterior margin with 2 setae. Second epimeron ventral mar-
gin with 3 robust setae, distoposterior corner rounded, posterior margin with 2 setae. 
Third epimeron ventral margin with 3 robust setae, distoposterior corner rounded, 
posterior margin with 2 setae.

Pleopods: pleopod 1 (Fig. 6B) peduncle lacking setae, with 2 coupling hooks; 
outer, inner rami with 8 and 11 segments respectively, basal segment of outer ramus 
with clothes-pin setae. Pleopod 2 peduncle lacking setae, with 2 coupling hooks; outer, 
inner rami with 7, 11 segments respectively, basal segment of outer ramus with clothes-
pin setae. Pleopod 3 outer, inner rami with 7, 7 segments respectively, basal segment of 
outer ramus with clothes-pin setae.

Urosome. Mostly bare, with sparse setae covering dorsal surface. Uropod 1 
(Fig. 6C): peduncle 1.4× inner ramus in length, with 8 outer robust setae and inner 
robust seta(e), posteromedial margin with distinct protuberance approximately 20% of 
inner ramus in length, dorsal margin weakly serrate; outer ramus approximately 80% 
length of inner, with 2 inner and outer robust setae and 4 apical robust setae; inner 
ramus possessing 3 outer and two inner robust setae, and 5 apical robust setae.

Uropod 2 (Fig. 6D): peduncle subequal in length to inner ramus, with 2 outer 
robust setae and inner robust seta; outer ramus approximately 88% length of inner ra-
mus without robust setae along the inner and outer margins, and 4 apical robust setae; 
inner ramus with 2 outer and 2 inner robust setae, with 5 apical robust setae.



Matthew L. Niemiller et al  /  Subterranean Biology 48: 117–146 (2024)130

Uropod 3 (Fig. 6E): small, shorter than telson, uniramous; peduncle 2× length of 
ramus; ramus with 3 apical robust setae.

Telson (Fig. 6F). Telson entire, elongated, 1.5× longer than broad, weakly tapering 
distally; apex with 10 robust setae, and plumose seta, 2 plumose setae arise dorsolater-
ally from both outer margins.

A B

C

D

E

F

Figure 5. Stygobromus anacostensis sp. nov., Holotype male, 5.9 mm (USNM 1606902): A pereopod 3 
B pereopod 4 C pereopod 5 D pereopod 6 E pereopod 7 F bifurcate sternal gill located on somites 6 and 
7. Scale bar: 0.5 mm.
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Female: allotype USNM 1606903 (Fig. 1B); Size 5.3 mm. Differing from male in 
several points, including, antennae; gnathopod shape and setation; uropods 1 and 2 
shape and setation. Structures not described below are as in male.

Antennae. Antenna 1 (not illustrated, but see Fig. 1B): 50% body length, 1.5× 
longer than antenna 2; peduncle, flagellum lacking robust setae; primary flagellum 

A

B

C

D

E

F

Figure 6. Stygobromus anacostensis sp. nov., Holotype male, 5.9 mm (USNM 1606902): A epimera 1–3 
B pleopod 1 (coupling spines and clothes pin seta enlarged) C uropod 1 (posteromedial protuberance 
enlarged) D uropod 2 E uropod 3 F telson. Scale bars: 0.25 mm.



Matthew L. Niemiller et al  /  Subterranean Biology 48: 117–146 (2024)132

with 16 segments. Antenna 2 (Fig. 7A): gland cone distinct; peduncle 1.5× longer than 
flagellum, with robust setae anteriorly, laterally on segments 3, 4, peduncle segment 
4 subequal in length to segment 5; flagellum 7-segmented, without small calceoli-like 
structures apically on distal flagellar segments.

Gnathopods. Gnathopod 1 (Fig. 7B): coxal plate with 3 apical and 2 facial setae; 
ischium with 2 setae and pubescence along posterior margin; carpus approximately 
40% length of propodus with robust seta along anterior margin and a group of setae on 
anterodistal margin, one of which is approximately 50% length of propodus, posterior 
margin with single group of plumose setae and 4 submarginal setae directed distally; 
propodus 1.25× longer than broad, with 1 marginal anterior seta, 3 superior medial 
setae, 3 setae inserted at anterodistal corner, 3 inferior medial setae and numerous 
plumose posterior setae; palm oblique, straight, with serrate blade-like edge running 
the length, 5 outer and 5 inner bifid robust setae, 4 outer setae, and inner seta; inner 
margin of defining angle with 3 bifid robust setae, outer margin with 4 bifid robust 
setae; dactylus with outer seta and 4 short setae covering the inner margin and 2 setae 
placed along the inner margin at base of nail.

Gnathopod 2 (Fig. 7C): coxal plate with 6 apical setae and 2 facial setae; ischium 
with 2 setae and pubescence along posterior margin; merus with pubescence covering 
posterior surface and 4 posterodistal setae, without robust seta along anterior margin, 
and two robust setae along distal margin; carpus subequal in length to propodus, with 
robust seta along anterior margin and two setae on anterodistal margin, one of which 
is approximately 33% length of propodus, posterior margin with 3 groups of plumose 
setae, distal-most bearing rastellate seta, and 3 submarginal setae directed distally; pro-
podus 1.1× longer than broad, with marginal anterior seta, 3 superior medial setae, 4 
setae inserted at anterodistal corner, 4 inferior medial setae, and 5 groups of plumose 
setae along posterior margin; palm oblique, straight, with serrate blade-like edge run-
ning the length, 3 outer and 3 inner bifid robust setae, 3 outer setae, and 1 inner seta; 
inner margin of defining angle with 4 bifid robust setae, outer margin with 4 bifid 
robust setae; dactylus with outer seta and 4 short setae covering the inner margin and 
seta placed along the inner margin at base of nail.

Gills and brood plates. Gills as in male with coxal gills on somites 2–6, somites 
6 and 7 with bifurcate sternal gills (Fig. 8A illustrates somite 7). Brood plates early in 
development in allotype, present on somites 2–5.

Urosome. Uropod 1 (Fig. 8B): peduncle 1.5× length of inner ramus, with 6 outer 
robust setae and inner robust seta(e), posteromedial margin lacking protuberance; out-
er ramus approximately 90% length of inner, with 1 inner and outer robust seta, and 
4 apical robust setae; inner ramus possessing 2 outer and inner robust seta(e), and 5 
apical robust setae.

Uropod 2 (Fig. 8C): peduncle subequal in length to inner ramus, with 2 outer 
robust setae and inner robust seta; outer ramus approximately 66% length of inner 
ramus with outer robust seta, and 4 apical robust setae, inner robust setae lacking.

Uropod 3 (Fig. 8D): small, shorter than telson, uniramous; peduncle 1.5× length 
of ramus; ramus with 4 apical robust setae.
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Telson (Fig. 8E). Telson entire, elongated, 1.5× longer than broad, weakly taper-
ing distally; apex with 9 robust setae, 2 plumose setae arise dorsolaterally from both 
outer margins.

Figure 7. Stygobromus anacostensis sp. nov., Allotype female, 5.3 mm (USNM 1606903): A antenna 2 
B gnathopod 1 (palm and dactyl enlarged) C gnathopod 2 (rastellate seta, palm and dactyl enlarged). 
Scale bars: 0.25 mm (A); 0.5 mm (B, C).

AB

C
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Variation. The new species was shown to vary slightly in several morphological 
characteristics, particularly between males and females (Table 3).

Molecular diagnosis. Average uncorrected pairwise genetic distance at the mito-
chondrial co1 locus between S. anacostensis and the most closely related populations of 
S. t. potomacus sampled at Caledon State Park is 6.5%, with 32 fixed mutations sepa-
rating the two taxa. Between S. anacostensis and the closest S. t. potomacus population 

Figure 8. Stygobromus anacostensis sp. nov., Allotype female, 5.3 mm (USNM 1606903): A coxa and ba-
sis of pereopod 7 showing placement of bifurcate sternal gill B uropod 1 C uropod 2 D uropod 3 E telson. 
Scale bars: 0.5 mm (A–C); 0.25 mm (D, E).
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(seepage spring near Malcolm X Ave in Anacostia Park; SP101), p-distance is 12.6%, 
with 67 fixed mutations. P-distance at the mitochondrial 16s locus between S. anacos-
tensis and the populations of S. t. potomacus sampled at Caledon State Park is 2.3%, 
with eight fixed mutations. Nuclear loci exhibited low levels of variation among all 
S. tenuis species group taxa sampled; however, some diagnostic genetic variation was 
noted. Two fixed mutations in the h3 locus and one fixed mutation in the 18s locus 
exist between S. anacostensis and the closest S. t. potomacus population (SP101).

Geographical distribution. The species is known to date only from the type local-
ity in Shepherd Parkway, which is a 1200-acre national park located on the southern 

Figure 9. Distribution of Stygobromus anacostensis sp. nov. and other S. tenuis group species in the Wash-
ington D.C. area, USA
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Table 3. Variation in morphological characters among select specimens of Stygobromus anacostensis 
sp. nov. examined.

Character Holotype 
Male USNM 

1606902

Paratype 
Male USNM 

1606904

Allotype 
Female 
USNM 

1606903

Paratype 
Female 
USNM 

1606906

Paratype 
Female 
USNM 

1606905
Body size 5.9 mm 6.7 mm 5.3 mm 4.8 mm 4.8 mm
Antenna 1
Flagellar segments 18 21 16 16 12
Accessory flagellum > than 1st 

flagellar 
segment

> than 2nd 
flagellar 
segment

> than 1st 
flagellar 
segment

> than 2nd 
flagellar 
segment

sub equal to 
second flagellar 

segment
Antenna 2
Peduncle Segments 4 to 5 length 1.04× 97% 1.15× 1.12× 1.13×
Flagellar segments unknown 12 7 7 7
Left Mandible
Palp segment 2 setae 8 7 5 3 4
E-setae 5 5 5 4 3
D-setae 8 8 8 8 5
Right Mantible
Palp 2nd segment setae 8 5 5 4 4
E-setae 5 5 4 4 3
D-setae 8 8 8 7 5
Maxilla 1
Inner plate marginal setae unknown 4 4 3 3
Palp subapical, apical setae unknown 3, 4 2, 4 2, 4 4, 2
Maxilla 2
Mx 2 inner plate facial setae unknown 3 2 or 3 2 or 3 2
Ganthopod 1
Ischium posterior setae 4 4 2 3 3
Carpus to propdus length 40% 40% 43% 46% 45%
Carpus submarginal setae 6 5 4 4 5
Propodus superior, inferior medial setae 4, 6 2, 4 3, 3 3, 3 2, 4
Palm inner, outer bifid setae 7, 7 7, 6 5, 5 4, 4 5, 3
Ganthopod 2
Coxal plate apical, facial setae 4,1 4,1 6,2 4,1 3,0
Ischium posterior setae 3 4 2 2 3
Merus anterior margin robust seta 1 1 0 0 0
Carpus to propdus length 71% 64% 82% 79% 84%
Carpus rastellate setae 3 3 1 3 0
Propodus superior, inferior medial setae 5, 5 3, 4 3, 4 3, 3 3, 3
Palm inner, outer bifid setae 5, 5 5, 6 3, 3 3, 3 3, 4
Dactylus inner setae 1 1 5 4 1
Pereopod 5
Coxal plate anterior apical setae 0 0 2 1 to 2 2
Basis posterior serrations 9 11 8 8 8
Pereopod 7
Coxal plate posterior apical setae 4 3 4 3 2
Basis anterior setae 8 7 5 5 4
Epimera
Epimeron 2 ventral, posterior setae 3, 2 unknown 3, 2 2, 2 2, 4
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bank of the Anacostia River just upstream from where the river flows into the Potomac 
River (Fig. 9). Shepherd Parkway is part of National Capital Parks East (NACE).

Habitat and ecology. Like other species of Stygobromus, S. anacostensis is a stygo-
biotic species occurring in groundwater habitats. All specimens have been collected 
from a seepage spring just off Malcolm X Avenue SE that marks the resurgence of hy-
potelminorheic groundwater at the surface (Fig. 10). Amphipods have been observed 
and collected from underneath moss-covered rocks, moss, and leaf litter on the small, 
2-m high rockface as well as the small pool of the seepage spring. The seepage spring 
possesses water throughout most of the year Little is known regarding the ecology and 
life history currently. Stygobromus anacostensis co-occurs with the groundwater isopod 
Conasellus (=Caecidotea) kenki (Bowman, 1967).

Character Holotype 
Male USNM 

1606902

Paratype 
Male USNM 

1606904

Allotype 
Female 
USNM 

1606903

Paratype 
Female 
USNM 

1606906

Paratype 
Female 
USNM 

1606905
Uropods
Uropod 1 peduncle outer, inner setae 8, 1 10, 1 6, 1 9, 1 8, 1
Uropod 2 peduncle outer, inner setae 2, 2 3, 1 2, 1 2, 1 2, 1
Uropod 2 outer ramus outer, inner setae 0, 0 1, 0 1, 0 1, 0 0, 0
Uropod 2 outer ramus apical setae 4 3 4 4 5
Uropod 2 inner ramus outer, inner setae 2, 2 2, 1 1, 1 1, 1 1, 1
Uropod 3 ramus setae 3 4 4 3 2
Telson apical robust setae 10 10 9 9 8

Figure 10. The type locality of S. anacostensis is a small hypotelminorheic seepage spring just off of Mal-
colm X Avenue, Shepherd Parkway, Washington, D.C., USA. Photograph by Jenna Keany.
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Conservation. Stygobromus anacostensis is known only from the type locality. The 
NatureServe conservation rank calculated is Critically Imperiled (G1). Under IUCN 
Red List criteria, S. anacostensis was assessed as Critically Endangered (CR B1) because 
of an extremely small EOO and AOO (known from a single small seep) in an urban 
area. Major threats to the species include increased risk of human intrusion and distur-
bance, habitat degradation, and pollution. The type locality population is offered some 
protection by occurring on National Park Service land, but the area controlled by the 
NPS is very narrow, and the site is highly vulnerable to road salt as well as any attempt 
to “improve” the drainage in the vicinity of the sidewalk.

Genetic and phylogenetic analyses

We amplified in total 2,738 bp of five loci. Uncorrected mtDNA p-distance between S. 
anacostensis and populations of S. tenuis potomacus at Caledon State Park (SP104 and 
SP105) was 6.5% and 12.6% between S. anacostensis and the nearest S. t. potomacus 
population sampled in Anacostia Park (SP101). Average uncorrected nucDNA p-dis-
tance was substantially lower, averaging 0.001 between S. anacostensis and S. tenuis po-
tomacus at Caledon State Park (SP104 and SP105), and 0.004 between S. anacostensis 
and the nearest S. t. potomacus population sampled in Anacostia Park (SP101).

The optimal substitution models for first, second, and third positions of co1 were 
TrNef+I (Tamura and Nei 1993), F81 (Felsenstein 1981), and K81+I (Kimura 1981), 
respectively. The optimal substitution model was HKY + I + G (Hasegawa et al. 1985) 

Figure 11. Maximum-likelihood phylogeny and species delimitations of Stygobromus anacostensis and 
other S. tenuis species group taxa for the mtDNA dataset (co1+16s loci). Asterisk represents bootstrap 
node support greater than 90. Colored bars represented hypothesized MOTU groupings (i.e., species) 
based on corresponding delimitation analyses.
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for 16s, K80 (Kimura 1980) for 18s, TIM2+I for 28s, and JC (Jukes and Cantor 1980) 
for h3. Phylogenetic tree topologies obtained for ML and Bayesian inference were high-
ly similar. Phylogenetic trees reconstructed using both ML and Bayesian inference for 
the mtDNA (co1+16s; Fig. 11) and mtDNA+nucDNA datasets (Fig. 12A) delimited 

A

B

Figure 12. Maximum-likelihood phylogenies of of Stygobromus anacostensis and other S. tenuis species 
group taxa for the (A) mtDNA+nucDNA dataset (co1+16s+18s+28s+h3 loci) and (B) nucDNA dataset 
(18s+28s+h3 loci). Asterisk represents bootstrap node support greater than 90.
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individuals of Stygobromus anacostensis from the type locality as distinct from other 
populations of the S. tenuis species group sampled with high bootstrap support. Popula-
tions of S. tenuis potomacus did not form a monophyletic group for any dataset. Nuclear 
loci exhibited low levels of variation among all S. tenuis species group taxa sampled 
(Figs 12B, 13). Two fixed mutations in the h3 locus and one fixed mutation in the 18s 
locus exist between S. anacostensis and the closest S. t. potomacus population (SP101).

Species delimitation

For the mtDNA dataset (Fig. 11), the ABGD approach resulted in nine MOTUs, with 
convergence of initial and recursive partitions at prior intraspecific divergence (P) = 0.028, 
which remained stable until P = 0.0359. The PTP approach yielded the same MOTU de-
limitations. All S. anacostensis samples formed a MOTU, while several S. tenuis potomacus 
populations were delimited as distinct MOTUs. The mPTP approach estimated seven 
MOTUs, with highly similar designations to the ABGD delimitations. Stygobromus ana-
costensis individuals were grouped as a single MOTU, as were several S. tenuis potomacus 
populations. Stygobromus allegheniensis and S. hayi were grouped into a single MOTU.

Discussion

Stygobromus anacostensis is morphologically and genetically most similar to S. tenuis 
potomacus, which overlaps in distribution with the new species. However, several 
morphological characters readily distinguish the two species in the Washington D.C. 

Figure 13. Median joining networks for nuclear loci (18s, 28s, and h3) generated in PopART v1.7.
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area, including by having only 2 C-setae on the mandibular palp and up to 8 E-setae. 
Stygobromus anacostensis also shares a similar overall morphology with other members of 
the S. tenuis species group as defined by Holsinger (1978) in the region, but the new spe-
cies can be distinguished morphologically from other members of the species complex 
by possessing a serrate blade-like edge along the length of both palms of gnathopods 
1 and 2 and by possessing rastellate setae on the posterodistal margin of the carpus of 
gnathopod 2. It should be noted that the serrate blade-like edge along the length of both 
gnathopod palms was most discernable after the digestion protocol noted in the materi-
als and methods. However, this feature was also easily visible on nondigested specimens, 
including juveniles. Thus, the characteristic is not an artifact of the digestion protocol. 
It is possible that this feature may be found on other Stygobromus species but has never 
been documented prior to this analysis. If so, this characteristic may be diagnostic not 
by its presence, but by its degree, as it was so highly visible. A reexamination of the 
palms of other Stygobromus species will help to determine the status of this characteristic.

With the description of S. anacostensis, the total number of described stygobiotic 
amphipods from the Piedmont and Atlantic Coastal Plain of the Maryland, Virginia, 
and District of Columbia area is now 14 species, with eight species now known from 
hypotelminorheic habitats in and near the Washington D.C. metropolitan area. In-
terestingly, unlike many other seepage springs in the region (Culver et al. 2012), S. 
anacostensis is not known to co-occur with any other Stygobromus species. Stygobromus 
tenuis potomacus is known from a seepage spring one km from the type locality in Ana-
costia Park, although in a different HUC10 drainage, but the possibility exists that this 
species co-occurs with S. anacostensis.

The discovery of a new species of Stygobromus amphipod from the Piedmont and 
Atlantic Coastal Plain is not surprising given high species richness of the genus not 
only in the region but also throughout North America, and the description of several 
species in recent years throughout the United States (Holsinger et al. 2011; Holsinger 
and Ansell 2014; Holsinger and Sawicki 2016; Cannizzaro et al. 2019; Gibson et al. 
2021). Moreover, uncovering cryptic diversity is an increasingly common finding of 
population genetic and phylogenetic studies in groundwater fauna (Lefébure et al. 
2006; Murphy et al. 2009; Zakšek et al. 2009; Niemiller et al. 2012, 2013; Devitt et al. 
2019), including crangonyctid amphipods (Etheridge et al. 2013; Niemiller et al. 2018; 
Cannizzaro et al. 2020). Niemiller et al. (2018) uncovered cryptic genetic variation at 
the mitochondrial co1 locus among populations of S. tenuis potomacus sampled in the 
Washington D.C. area, including up to 9.2% sequence divergence among populations 
separated by only 7.2 km straight-line distance. We uncovered similar levels of genetic 
variation among and within species of the S. tenuis species group highlighted by 12.6% 
mtDNA sequence divergence between populations of S. anacostensis and S. t. poto-
macus separated by just 10 km. Such levels of divergence support the view that many 
groundwater species are dispersal limited and that morphological species with broader 
distributions are likely comprised of multiple morphologically similar but genetically 
distinct lineages (Niemiller et al. 2012, 2018; Ethridge et al. 2013). Stygobromus ana-
costensis is one of likely several additional undescribed species that await morphological 
and genetic investigation and formal description within the S. tenuis species group.
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