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Abstract

The transition from carnivory to omnivory is pootly understood. The ability to feed at more than one
trophic level theoretically increases an animal’s fitness in a novel environment. Because of the absence
of light and photosynthesis, most subterranean ecosystems are characterized by very few trophic levels,
such that food scarcity is a challenge in many subterranean habitats. One strategy against starvation is
to expand diet breadth. Grotto Salamanders (Eurycea spelaea (Stejneger, 1892)) are known to ingest bat
guano deliberately, challenging the general understanding that salamanders are strictly carnivorous. Here
we tested the hypothesis that grotto salamanders have broadened their diet related to cave adaptation
and found that, although coprophagous behavior is present, salamanders are unable to acquire sufficient
nutrition from bat guano alone. Our results suggest that the coprophagic behavior has emerged prior to

physiological or gut biome adaptations.
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Introduction

Coprophagy is a feeding strategy commonly found in invertebrates (Weiss 2006), but
much less so in vertebrates. Coprophagy sometimes exists in mammals such as rodents
and lagomorphs, and to a lesser degree in pigs, horses, dogs and nonhuman primates
(Thacker and Brandt 1955; Soave and Brand 1991; Marinier and Alexander 1995;
Aitken 2003; Krief and Hladik 2004). In amphibians, coprophagy is rare but when
present may influence larval development of some species with herbivorous larvae.
For example, herbivorous tadpoles regularly feed on feces of conspecifics in captivity
(Gromko et al. 1973; Steinwascher 1978; Pryor and Bjorndal 2005), even when other
food sources are available ad libitum (Pryor and Bjorndal 2005). Herbivorous tadpoles
have digestive morphologies and physiologies similar to other herbivorous vertebrates
that rely on hindgut fermentative digestion (Pryor and Bjorndal 2005) and ingest feces
to inoculate their digestive tracts with beneficial microbes (Steinwascher 1978; Beebee
1991; Beebee and Wong 1992). Growth rates are slower when feces are removed from
the diet (Steinwascher 1978) suggesting that herbivorous tadpoles benefit nutritionally
from coprophagy even though feces are lower in energy (Gromko et al. 1973).

The literature is scarce when it comes to coprophagy in predatory amphibians (Fe-
nolio et al. 2006). However, faces consist of a readily available food resource for animals
living in energy-limited environments, such as caves. Food and nutritional resources in
caves are derived from surface inputs and can be limited both temporarily and spatially
within these systems (Culver and Pipan 2014). Likewise, foraging in aphotic habitats
of caves presents significant challenges for animals that potentially may go weeks to
months between feeding bouts. Guano produced by seasonally roosting bats represents
an important food source for both terrestrial and aquatic invertebrates (Howarth 1983;
Poulson and Lavoie 2000), which in turn are prey for fishes and salamanders (Poulson
and Lavoie 2000; Graening 2005; Niemiller and Poulson 2010; Fenolio et al. 20006,
2014). Salamanders have been known to be strictly carnivorous but Fenolio et al. (2006)
showed that obligate cave-dwelling Grotto Salamander larvae (Eurycea spelaea (Stejneger,
1892), Fig. 1) ingests bat guano. This behavior is not incidental to the capture of aquatic
invertebrate prey. Stable isotope signatures suggest nutrients from bat guano could be
incorporated into salamander tissues, and nutritional analyses revealed that bat guano is
comparable to potential prey items in nutritional and energy content, suggesting that bat
guano could be a viable alternative food source in some energy-poor cave systems. Since
the relative importance of guano in the diet of subterranean salamanders is unknown, the
aim of this study was to determine whether subterranean salamander larvae could persist
on an exclusive guano diet compared to the typical carnivorous diet of salamanders.

Materials and methods

All experiments were conducted under the approval of animal protocol #15022 by the
Rutgers Newark Institutional Animal Care and Use Committee that handles NJIT re-
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Figure |. Eurycea spelaea showing troglobitic characters, lack of pigmentation and microphthalmy.
Scale bar: 0.5 cm.

search. We collected 46 specimens of Eurycea spelaea from January-Stansbury Cave lo-
cated in the Ozark Plateau National Wildlife Refuge in Delaware County, Oklahoma.
Salamanders were housed individually in mesocosms submerged in the cave stream.
Each mesocosm consisted of a 500 ml plastic bottle with small holes so that the sala-
manders had continuous access to fresh cave water. All lids were connected to a central
line via a short string. Salamanders were collected June 6th but the study did not un-
til June 22", salamanders were fed amphipods until the start of the study. During the
study, salamanders were fed every four days either a strict diet of live amphipods, bat
guano, or nothing. We collected amphipods and bat guano fresh on the day of feeding
from the cave. The cave is inhabited by a maternity colony (ca. 15,000 individuals) of
federally endangered Gray bats (Myotis grisescens A.H. Howell, 1909) from late April
through early November (Fenolio et al. 2006, 2014). Salamanders were randomly as-
signed to a negative control group, or one of two prey types and one of four feeding
treatments based on percentage of initial body mass: 0% (control) 2.5%, 5%, and
10%. Salamanders were massed before feeding to track body mass loss or gain and fed
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the corresponding percentage of initial body mass of amphipods or guano. We used
a milligram- accuracy scale (Ohus, Parsippany, NJ, USA). Care was taken to remove
any food remnants before the next feeding, although in most cases salamander ate all
the food. Salamanders that lost 230% of initial body mass were removed the study. We
used ANCOVA to compare body mass of the different treatments in MatLab with an
alpha level of 0.05. Normality of ranked data was verified via the Kolmogorov-Smirnov
test. Salamanders were released back into the cave after the study per permitting regu-
lations.

All data associated with this study are available from the figshare digital repository:
https://doi.org/10.6084/m9.figshare.4805656

Results

Loss of body mass in treatment groups: All treatment groups lost some body mass dur-
ing the study (34 days; Fig. 2). Animals in the control group (n = 10) were removed
from the study earlier (27 days) than the other groups (34 days) due to body mass loss.
Salamanders in the control group experienced the steepest loss of body mass. In gen-
eral, salamanders fed guano lost more body mass than salamanders fed amphipods, and
at 34 days, most guano-fed salamanders had reached the 30% loss limit. Body mass
was more variable in amphipod-fed groups with both gains and losses. Salamanders
fed 2.5% of initial body mass (IBM) lost an average of 31.3% (+14.3%) body mass
eating guano compared to an average of 9.6% (+36.0%) eating amphipods. Salaman-
ders fed 5% IBM lost 30.2% (+4.8%) body mass when eating guano compared to
7.9% (+28.1%) eating amphipods. Body mass loss was least for salamanders fed 10%
IBM, and guano-fed salamanders lost 28.3% (+4.4%) body mass compared to 7.6%
(£11.5%) for the amphipod group.

Comparisons of weight loss: For salamanders fed 2.5% IBM, body mass loss rates
for guano-fed and amphipod-fed groups were slower than the control group (Guano-
fed: F=6.82, P=0.01; Amphipod-fed: F= 12.14, P = 0.0007) but not different from
each other (#=2.86, P = 0.09). For salamanders fed 5% IBM, guano-fed animals lost
body mass at a slower rate than amphipod-fed animals (¥ = 11.05, P = 0.0012) and
control animals (¥ = 14.75, P = 0.0002), while amphipod-fed animals lost body mass
similarly to control animals (7 = 0.07, P = 0.795). For salamanders fed 10% IBM,
the amphipod-fed group lost body mass slower than the guano-fed group (£ = 6.4,
P =0.131) and control group (F=26.26, P = 1.09¢-6), while the guano-fed group was
similar to the control group (7= 8.02, P =0.005).

Discussion

All amphipod groups had individuals that lost and gained weight within the period of
the study. The variability in body mass was smaller in the 10% amphipod IBM com-
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Figure 2. Regression lines based on body mass loss of different diet types and amounts. Salamanders
were fed nothing (green), live amphipods (red) or guano (blue). Groups were fed every four days based
on their initial body weight, with 2.5% (A), 5% (B) or 10% (C). The calculated regression lines were as
follows: Control -1.16x+96.01 R? = 0.54, n = 10; 2'50/03mphipod -0.26x+98.49, R = 0.39, n = G; 2.5%guam
0.70x193.58, R = 0.02, n = 6; 5%, -0.28x+102.22, R = 0.03, n = 6; 5%, -1.12x+98.89, R’
=0.77,n=6; 10% -0.35x+103.36, R> = 0.21, n = G; IOO/Oguam -0.70x+96.01, R?> = 0.53, n = 6.

amphipod
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pared to the 5% and 2.5%, but a few individuals lost weight making the overall average
mass at the end of the study slightly less than the IBM. The large variability in the 5%
and 2.5% amphipod groups suggests that individuals may be behaving differently or
some individuals may be stressed in the mesocosm. Nonetheless, since guano groups
resemble more closely control groups we conclude that amphipods are a better food
source for the salamanders.

Shifts in habitat are often linked with dietary shifts, as environmental changes
frequently cause organisms to alter foraging behaviors (Rosalino et al. 2005; McMeans
et al 2015). The transition from surface to subterranean habitats involves dramatic
morphological, physiological, and behavioral changes associated with life in complete
darkness and often limited energy resources, including a predicted increase in dietary
breadth (Culver 1982, 1994; Holyoak and Sachdev 1998; Fenolio et al. 2006). In
subterranean salamanders, the evolution of coprophagy may be an unusual foraging
strategy to exploit a nutritious and seasonally abundant resource (i.e., bat guano)
in an otherwise food-limited environment. While it has been demonstrated that
Grotto salamander larvae will regularly employ coprophagy of calorically-rich bat
guano (Fenolio et al. 2006), our study suggests that Grotto salamander larvae are
unable to thrive on a guano-exclusive diet for a prolonged period. So in this case the
coprophagous behavior has emerged in evolution prior to the necessary physiological
changes to gain nutrition from it.

The apparent disagreement between coprophagous behavior in Grotto salaman-
ders and the lack of apparent absorption may have several possible explanations. First,
Grotto salamander larvae, and salamanders in general, do not possess the morpho-
logical and physiological digestive traits necessary to exploit guano as a food resource.
Salamanders in general are strict carnivores with short digestive tracts and have buc-
cal enzymes with low amylolytic activity (Stevens and Hume 2004). In contrast, co-
prophagy is most often associated with herbivory, which predominately utilize post-
gastric (hindgut) fermentation and the consumption of feces increases the absorption
of nutrients and inoculate the hind gut with microbes (Clauss et al. 2007). The selec-
tive consumption of predigested material is a form of omnivory. We know relatively
litcle about the adaptive advantages of and the selective drivers that favor omnivory,
and by proxy coprophagy, in vertebrates (but see Diehl 2003). Coprophagy requires
the evolution of not only a coprophagous behavior but also the evolution of morpho-
logical and physiological digestive traits to process feces. It is unknown whether these
traits are linked, but theoretically behavioral evolution can precede physiological and
morphological evolution. Second, since Grotto salamanders are ingesting feces with
high protein content (54%; Fenolio et al. 20006) of insectivores (bats) rather than feces
from herbivores, a vastly different gut microbiome is needed to efficiently digest feces.
So in addition to lacking the morphological and physiological traits, Grotto salaman-
ders may not possess the necessary gut flora to digest and fully process the contents
of bat guano. Ley et al. (2009) found that diet can impact gut microbiome diversity
in mammals, which increases with evolution from carnivory to omnivory. Digestive
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evolution in amphibians, as well as their gut biomes and the gut’s propensity for evolu-
tion, is yet to be examined in detail. Finally, coprophagy may reflect mistaken identity
due to an innate feeding response for moving prey. In subterranean habitats, aquatic
salamanders and cavefishes rely heavily on mechanosensation to detect and capture
moving prey. Guano falling into a pool and settling on the substrate may elicit a simi-
lar feeding response as crustaceans and other aquatic invertebrates. Guano may not be
immediately rejected but ingested instead because of the high protein and fat content
of the insectivorous guano. Alternatively, guano may possess a micronutrient, vitamin
or mineral otherwise scarce in the subterranean habitat (see Fenolio et al. 2006). While
guano may not prevent a loss in mass, it may still offer some nutritional benefi.
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