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Abstract
A set of 69 specimens from 19 groundwater species of the genera Niphargus, Niphargellus, Microniphargus
and Crangonyx was genetically screened for microsporidian infections. Samples mostly originated from
groundwater-dependent spring environments (71%), natural caves (9%) and artificial caverns/tunnels
(13%). Amphipod hosts were identified by morphology and/or molecular data, whereas microsporidian
parasites were characterised by a genetic screening assay targeting a section of the small subunit rRNA gene.
Five microsporidian species (Dictyocoela duebenum; Nosema sp.; Hyperspora aquatica and two unde-
scribed Microsporidium spp.) were revealed from 13 host specimens (Niphargus schellenbergi; N. aquilex
lineages B, F and G; Niphargellus arndti). In particular N. schellenbergi was frequently infected with D.
duebenum as well as a new and potentially niphargid-specific Nosema sp. identified in Niphargellus arndti.
Odur results shed further light on the still largely unknown diversity and specificity of microsporidian
parasites in groundwater amphipods and subterranean animals in general.
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Introduction

Microsporidians are microparasites that belong to the taxon Opisthosporidia, a sister
group of the Fungi (Karpov et al. 2014). Depending on the microsporidian species,
they can develop in various host tissues where they form spores that are infective for the
next host (horizontal transmission). Some microsporidians are transmitted vertically
from the mother to the offspring (Dunn and Smith 2001, Smith 2009). Microsporid-
ians can influence the host population by causing mortality of infected individuals, or
by modulating the sex ratio towards a female-biased population in the case of vertical
transmission (Dunn and Smith 2001).

Studies on microsporidian diversity in freshwater amphipods have a long history
and are steadily increasing (see Bulnheim 1975 for review, Ironside et al. 2003, Haine
et al. 2004, Terry et al. 2004, Krebes et al. 2010, Wilkinson et al. 2011, Bacela-Spy-
chalska et al. 2012, 2018, Stentiford et al. 2013, Stentiford and Dunn 2014, Grabner
etal. 2015, Madyarova et al. 2015, Weigand et al. 2016, Dimova et al. 2018, Quiles et
al. 2019), but knowledge on microsporidians in groundwater amphipods is very scarce.
Early last century, Poisson (1924) was the first reporting Niphargus stygius (today re-
garded as a species-group) to be infected with Microsporidium vandeli (originally re-
ferred to as Mrazekia niphargi, later Bacillidium niphargi) and Microsporidium niphargi
(former 7helohania vandeli). Almost fifty years later, Bulnheim (1971) stated that Pleis-
tophora miilleri (described as Stempellia miilleri) was detected in Niphargus ilidzensis.
Since then, it has become more and more clear that the identification and delineation
of microsporidian species as well as of groundwater amphipod hosts had been far from
consistent. Again, almost 50 years after Bulnheim’s publication, Weigand et al. (2016)
were the first addressing microsporidian diversity in a Niphargus population by geneti-
cally analysing the parasites as well as the host species. The authors revealed Nosema
granulosis, Orthosomella sp., Microsporidium sp. 1 and Microsporidium sp. BPAR3 as
well as some unclassified infections for the target species Niphargus schellenbergi. No-
tably, all microsporidian infections were shared by a sympatrically occurring popula-
tion of Gammarus fossarum lineage 13. This lead to the assumption that groundwater
amphipods could enable transmission of microsporidians between surface habitats that
are only connected by groundwater (Weigand et al. 2016).

In the present study, we intended to take another step in improving our sporadic
knowledge on microsporidian diversity in a variety of groundwater-dependent envi-
ronments in Central Europe using different niphargids (genera Niphargus, Niphargel-
lus, Microniphargus) as target hosts.

Material and methods

Sample material

In total, 58 Niphargus specimens, 9 Niphargellus, 1 Microniphargus leruthi and 1 Cran-
gonyx sp. have been analysed for microsporidian infections (Table 1; for further infor-
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mation see Suppl. material 1). Specimens have been collected in the period between
2015-2018, representing the morphospecies Niphargus aquilex, Niphargus glenniei,
Niphargus irlandicus, Niphargus kochianus, Niphargus puteanus, Niphargus schellenbergi,
Niphargellus nolli and Niphargellus arndlti, as well as some undetermined Niphargus sp.
Most of the samples originate from Central Europe (here, Germany, Belgium, Luxem-
bourg and the East of France), fewer from surrounding areas (Poland, Great Britain,
Ireland, The Netherlands, Czech Republic and the rest of France). The most frequently
sampled aquatic habitats are springs, followed by subterranean water bodies in natural
caves and artificial caverns (Table 1).

Host barcoding and parasite detection

One to two molecular markers were investigated for molecular species identification
of amphipods, thus to a) allow a genetic cross-validation of the often morphologically
hard to identify niphargid specimens, b) identify also juvenile specimens and c) enable
a more precise taxonomic identification in case of cryptic species complexes (e.g. for
Niphargus aquilex) (FiSer et al. 2009). The mitochondrial cytochrome ¢ oxidase subunit
I (COI) marker and the nuclear 28S rDNA marker (28S) were targeted. DNA was ex-
tracted from whole specimens according to the DNeasy Blood & Tissue Kit (Qiagen)
and the NucleoSpin Tissue Kit (Macherey-Nagel) manufacturers’ protocols. The COI
marker was amplified using the primer pair LCO1490-]] (5-CHA CWA AYC ATA
AAG ATATYG G-3’) and HCO2198-]] (5>-AWA CTT CVG GRT GVC CAA ARA
ATC A-3’) of Astin and Stiiben (2008). The PCR mix contained 1 pL. DNA extract
of variable concentration, 0.8 pL of each primer (10 pmol/pL), 5 pL of DreamTaq
DNA Polymerase Master Mix (Thermo Scientific) and 2.4 pL of ultrapure water. PCR
cycling conditions were 3 min denaturation at 94°C, 36 cycles of 20 s denaturation at
94°C, 45 s annealing at 50°C, and 60 s extension at 65°C; final elongation of 2 min at
65°C. Bi-directional Sanger-sequencing was performed at Genoscreen (Lille, France)
using the PCR primer pair. The 28S nuclear fragment was amplified using the primer
pair Niph15 (5-CAA GTA CCG TGA GGG AAA GTT-3’) and Niphl6 (5-AGG
GAA ACT TCG GAG GGA ACC-3’) of Verovnik et al. (2005). The PCR mix con-
tained 2 pL of DNA extract of variable concentration, 1 pL of each primer (10 pmol/
pl), 0.2 pL of REDTaq Polymerase (Sigma-Aldrich), 5 pL REDTaq reaction buffer
and 15.8 pL ultrapure water. PCR cycling conditions for 28S were an initial 3 min
denaturation at 95°C, 56 cycles of 30 s denaturation at 94°C, 60 s annealing at 45°C,
and 90 s extension at 72°C. Bi-directional Sanger-sequencing was performed using
three primers: Niph 15, Niph 20 (5-AAA CAC GGG CCA AGG AGT AT-3’) and
Niph 21 (5-TAT ACT CCT TGG CCC GTG TT-3’) (Flot et al. 2010). All PCR re-
sults were visualised on a 1.2% agarose gel prior to sequencing. COI-based molecular
species identification was performed against the Barcode of Life Data System (BOLD,
Ratnasingham and Hebert 2007) and the 28S marker compared to sequences stored in
NCBI GenBank. Additional but so far unpublished COI and 28S sequences as part of
an ongoing doctoral thesis were integrated for molecular species identification.
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The detection of microsporidians with the primers V1 / Mic-uni3R (targeting a
section of about 450 bp of the small subunit (SSU) rRNA gene) was done as described
in Weigand et al. (2016). Additionally, selected microsporidian-positive samples were
amplified with the primers HG4f and 580r (amplifying a product of about 500 bp)
as suggested by Bacela-Spychalska et al. (2018) to obtain additional sequence infor-
mation from the internal transcribed spacer (ITS) and the large subunit (LSU) of the
rDNA gene. The intention was mainly to unambiguously match the isolates of Dictyo-
coela spp. to the respective GenBank entries. PCR products were purified with a Micro
Elute Cycle Pure Kit according to manufacturer’s instructions (Omega Bio-Tek) and
sequenced (Eurofins Genomic Services).

Results

Host diversity and cryptic species

The COI marker was used for DNA barcoding of 57 specimens, the 288 locus analysed
for 38 specimens — with a total of 32 specimens being investigated for both markers
(Suppl. Table S1). Six specimens were identified by morphology only, as PCR amplifi-
cation and/or DNA sequencing were not successful. The total groundwater amphipod
dataset screened for microsporidian infections comprised 58 Niphargus specimens, 9
Niphargellus specimens, Crangonyx sp. and Microniphargus leruthi (Table 1). With 26
specimens Niphargus (cf.) schellenbergi was the most frequent taxon. Furthermore, the
N. aquilex morphospecies was revealed to be represented by ten cryptic species in our
dataset, which already comprised taxonomic annotations (V. aquilex A, B and F sensu
Mclnerney et al. 2014) or were newly named in this study (i.e. V. aguilex-complex
lineages G to M) using the terminology as introduced by Mclnerney et al. (2014). The
COI sequences can be retrieved from Suppl. material 2.

Microsporidian diversity

A literature review was performed on known microsporidian infections in niphargid
amphipods, and our own results added (Table 2).

No microsporidians were detected in the single M. leruthi and Crangonyx sp. In
total, 13 niphargids were tested positive for microsporidians by PCR (19.1%, Table
1). Most of the isolates (9, 13.2%) were identified as Dictyocoela duebenum (accord-
ing to Bacela-Spychalska et al. 2018). This microsporidium was found mainly in
N. schellenbergi (7 out of 9) as well as in Niphargus aquilex lineages B and F. It was
found almost exclusively in spring habitats. The sequences of the remaining four mi-
crosporidians were clearly different and only one host individual was found infected
each (1.4%). One isolate from Niphargellus arndti was similar to Nosema sp. (97.2%
to KM977840) previously isolated from Eulimnogammarus verrucosus (Madyarova
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Table 2. Overview of microsporidian infections in groundwater amphipods of the family Niphargidae.

Host Microsporidium Reference
Niphargellus arndti Hyperspora aquatica (99.8% similar to KX364284) this study
Microsporidium sp. (97.5% to KX137915)* this study

Nosema sp. (97.2% to KM977840) this study

Niphargus aquilex B Dictyocoela duebenum (99.5% to MH753359) this study
Niphargus aquilex F Dictyocoela duebenum (99.5% to MH753359) this study
Niphargus aquilex G Microsporidium sp. (93.1% to F]755996)* this study

Niphargus ilidzensis — Pleistophora miilleri (probable syn. Stempellia miilleri, Microsporidium ~ Bulnheim (1971)
giraudi, Thelohania miilleri, T giraudi, Pleistophora blochmanni, Glugea

miilleri)
Niphargus Dictyocoela duebenum (99.5% to MH753359; 99.7% to JQ673483; this study
schellenbergi 99.6% to MG063275)
Microsporidium sp. BPAR3 (KT633993)* Weigand et al. (2016)
Microsporidium sp. I (KT'633992)* Weigand et al. (2016)
Nosema granulosis Weigand et al. (2016)
Orthosomella sp. Weigand et al. (2016)
Niphargus stygius Microsporidium vandeli (probable syn. Microsporidium niphargi, Poisson (1924)
species group Mrazekia niphargi, Bacillidium niphargi, Thelohania vandeli)

*Microsporidium sp. is a transitory genus for genetically identified microsporidian isolates without a link to a morphologic-
al description. Therefore, GenBank accession numbers for the isolate or the respective best match are given in these cases.

etal. 2015) and 96.8% to Nosema granulosis (MK719384) isolated from Gammarus
roeselii (Quiles et al. 2019). An isolate obtained from N. aquilex lineage G showed
a similarity of 93.1% to a microsporidian sequence from the amphipod Crypruro-
pus tuberculatus collected in Lake Baikal (FJ755996). Two additional microsporid-
ian isolates were sequenced from Niphargellus arndti; one was 97.5% similar to a
microsporidian detected in caddisfly larvae (KX137915, Grabner et al. 2017), the
other was 99.8% similar to the hyperparasitic microsporidian Hyperspora aquatica
(KX364284, Stentiford et al. 2017).

Sequencing of the PCR product obtained with the HG4f-580r primers from two
N. schellenbergi-specimens resulted in two non-overlapping fragments that were be-
tween 95.4% (Pseudocollinia beringensis; HQ591477) to 98.5% (Gymnodinioides pitel-
kae; EU503534) genetic similarity to sequences of apostome ciliates from krill and
marine amphipods. The SSU rDNA sequences can be retrieved from Suppl. material 3.

Discussion

Due to a generally low supply of nutrients and often species-poor local commu-
nities, groundwater(-dependent) ecosystems are ecologically particularly sensitive.
Therefore, transmission pathways might be ecologically more relevant and effects
of parasites might have a stronger regulatory role in these environments. In the pre-
sent study, five different microsporidian isolates could be obtained from 68 tested
niphargid individuals, which correspond to about 0.07 microsporidian species per
host individual. This is much lower compared to the study of Weigand et al. (2016)
who found four microsporidian species in 21 tested V. schellenbergi, therefore a rate
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of 0.19 parasite species per host individual. Also, the overall prevalence was much
higher in the latter (>80%), compared to the present study (19%). This difference
might be explained by the close connection of the investigated Niphargus-population
to a surface population of Gammarus fossarum lineage 13 with a microsporidian
prevalence of 90% in the study of Weigand et al. (2016). Transmission from this
highly infected surface population might have been the cause for the comparatively
high prevalence in Niphargus spp. found in their study. Nevertheless, it has to be
noted that the majority of niphargid specimens from the present study had been
sampled from spring habitats, and as such, also co-exist with epigean arthropods,
including Gammarus fossarum (lineage 13). Alternatively, in particular Niphargus
schellenbergi might be susceptible for microsporidian infections. Further indication
might be seen in our study results as well, as out of the 26 specimens identified as
Niphargus (ct.) schellenbergi seven were infected, corresponding to a rate of 0.27
parasite species per host individual.

The most abundant microsporidium found in the present study was Dictyocoela
duebenum, a common species occurring in a variety of amphipods (Terry et al. 2004,
Grabner et al. 2015, Wilkinson et al. 2011, Bacela-Spychalska et al. 2018). This spe-
cies is generally transmitted vertically (from mother via eggs directly to the offspring)
and can feminize the host population (Ironside et al. 2003). But there is also evidence
for phases of horizontal transmission (masses of spores are released after host death
and infect other individuals when they ingest the spores) that will cause increased host
mortality (Wilkinson et al. 2011). Therefore, D. duebenum might be transmitted to
Niphargus populations when they come in contact with other infected amphipods and
persist in the population by vertical transmission. As we tested only few host individu-
als per site (1-3), we cannot draw conclusions about the actual absence of microsporid-
ians at sites with specimens that were tested negative for microsporidians. Nevertheless,
some Niphargus populations seem to be free of D. duebenum, as this species was not
found in the study of Weigand et al. (2016).

In the study by Weigand et al. (2016), Nosema granulosis was detected in V.
schellenbergi. This microsporidium was originally described from Gammarus duebeni
(Terry et al. 1999) and is the only species of this genus recorded from different spe-
cies of amphipods (Terry et al. 2004). The Nosema isolate from Niphargellus arndti
detected in the present study shows a sequence divergence of 3.2% to the closest
Nosema granulosis sequence in GenBank and might be in fact a new Nosema species.
It is most closely related to a Nosema sp. isolate found in the freshwater amphipod
Eulimnogammarus verrucosus (97.2% to KM977840). This amphipod is endemic to
Lake Baikal (Russia) where it inhabits the upper and sub-littoral zones, being com-
monly sampled in high numbers from water depths between 0.1-15 m (Bazikalova
1945, Rivarola-Duarte et al. 2014). Similar to D. duebenum, Nosema species might
be transmitted to Niphargus-populations from other amphipods in phases of hori-
zontal transmission. As the Nosema sp. detected here in Niphargellus arndti was not
revealed by any other genetic study on amphipod microsporidians so far, it might be
a niphargid-specific species.


http://www.ncbi.nlm.nih.gov/nuccore/KM977840

80 Daniel Grabner et al. | Subterranean Biology 33: 71-85 (2020)

The microsporidian isolate from N. aquilex (lineage G) showed only a low simi-
larity (93.1%) to a previously characterized microsporidian isolate from amphipods.
Therefore, it should be considered as a new sequence record. Also the isolate from
Niphargellus arndti with 97.5% similarity to a microsporidian isolate from caddisfly
larvae is probably a species that has not been sequenced and described yet.

A puzzling finding is the microsporidium from Niphargellus arndti that was geneti-
cally 99.8% similar to Hyperspora aquatica, a microsporidian hyperparasite of Marteilia
cochillia (Paramyxida) from cockles (Stentiford et al. 2017). To date, Paramyxea of
amphipods were only described from marine species (Ginsburger-Vogel and Desportes
1979, Short et al. 2012), but the sequence of H. aquatica shows a close relationship
also to other microsporidians of freshwater amphipods. Genetically most similar is
a Microsporidium sp. (98.9% to HM800853) from a marine parasitic copepod, and
Stentiford et al. (2017) discussed a possible involvement of copepods in the life cycle
of H. aquatica. Based on these assumptions, we can speculate that a related freshwater
species utilizes (only) amphipods as hosts.

In this context, it should be mentioned that whole-body homogenates of the hosts
were used for DNA extraction, including gut content and organisms associated with the
amphipod, e.g. epibiotic ciliates. While Dictoyocoela and Nosema spp. are well character-
ized parasites of amphipods, we cannot be sure about the location of the other three mi-
crosporidian isolates detected in the present study. Therefore, the possibility exists that
the microsporidium from the present study with high sequence similarity to H. aquatica
is actually infecting protists associated with the amphipods (see also discussion in Sten-
tiford et al. 2017) or originates from groundwater copepods ingested by niphargids.

An unexpected finding was the detection of a sequence most similar to an apostome
ciliate in two individuals of V. schellenbergi from a single site (North Rhine-Westphalia,
spring near Behlingen). Apostome ciliates are exuvitrophic or parasitoids of inverte-
brates, mainly crustaceans, and were described previously from marine and freshwater
amphipods (e.g. Bradbury 2005, Chantangsi et al. 2013, Gudmundsdéttir et al. 2018,
Lynn and Striider-Kypke 2019). Apostome ciliates were also detected in groundwa-
ter habitats. For example, Collinia neophargi was described from Crangonyx subterra-
neus (syn. Neoniphargus moniezi, Ginet 1988) (Bradbury 1994). Gudmundsdéttir et
al. (2018) isolated five different sequences of apostome ciliates from the groundwater
amphipods Crangonyx islandicus and Crymostygius thingvallensis from Iceland. Inter-
estingly, the ciliate sequence from the present study was most similar (98.5%) to an
apostome ciliate from the marine amphipod Gymnodinioides pitelkae (Bradbury 2005),
probably due to the lack of related sequence information from freshwater species.

Conclusion

In the present study, Niphargus schellenbergi was the most frequent taxon, but also
demonstrated a proportionally high infection rate. A total of five different microspo-
ridian species were discovered, with Dictyocoela duebenum being the most frequent and
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found in different niphargid isolates, but preferably in V. schellenbergi. This shows that
different populations of groundwater amphipods can be impacted by this feminizing
microsporidium. Other single findings of microsporidians give an indication of the di-
versity but a larger sample size and ultrastructural studies would be desirable to link the
genetic data to previous morphological descriptions. We want to conclude that more
studies on microsporidians (and other parasites) in groundwater species are needed
to improve our understanding on their effect on the host populations and sensitive
aquatic communities.
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